tff.learning.templates.build_functional_model_delta_client_work
Creates a ClientWorkProcess
for federated averaging.
tff.learning.templates.build_functional_model_delta_client_work(
*,
model: tff.learning.models.FunctionalModel
,
optimizer: tff.learning.optimizers.Optimizer
,
client_weighting: tff.learning.ClientWeighting
,
metrics_aggregator: Optional[tff.learning.metrics.MetricsAggregatorType
] = None,
loop_implementation: tff.learning.LoopImplementation
= tff.learning.LoopImplementation.DATASET_REDUCE
) -> tff.learning.templates.ClientWorkProcess
This differs from tff.learning.templates.build_model_delta_client_work
in
that it only accepts tff.learning.models.FunctionalModel
and
tff.learning.optimizers.Optimizer
type arguments, resulting in TensorFlow
graphs that do not contain tf.Variable
operations.
Returns |
A ClientWorkProcess .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-08-23 UTC.