tff.learning.optimizers.build_sgdm
Stay organized with collections
Save and categorize content based on your preferences.
Returns a tff.learning.optimizers.Optimizer
for momentum SGD.
tff.learning.optimizers.build_sgdm(
learning_rate: optimizer.Float = 0.01,
momentum: Optional[optimizer.Float] = None
) -> tff.learning.optimizers.Optimizer
Used in the notebooks
This class supports the simple gradient descent and its variant with momentum.
If momentum is not used, the update rule given learning rate lr
, weights w
and gradients g
is:
w = w - lr * g
If momentum m
(a float between 0.0
and 1.0
) is used, the update rule is
v = m * v + g
w = w - lr * v
where v
is the velocity from previous steps of the optimizer.
Args |
learning_rate
|
A positive float for learning rate, default to 0.01.
|
momentum
|
An optional float between 0.0 and 1.0. If None , no momentum is
used.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-09-20 UTC.
[null,null,["Last updated 2024-09-20 UTC."],[],[],null,["# tff.learning.optimizers.build_sgdm\n\n\u003cbr /\u003e\n\n|-------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/federated/blob/v0.87.0 Version 2.0, January 2004 Licensed under the Apache License, Version 2.0 (the) |\n\nReturns a [`tff.learning.optimizers.Optimizer`](../../../tff/learning/optimizers/Optimizer) for momentum SGD. \n\n tff.learning.optimizers.build_sgdm(\n learning_rate: optimizer.Float = 0.01,\n momentum: Optional[optimizer.Float] = None\n ) -\u003e ../../../tff/learning/optimizers/Optimizer\n\n### Used in the notebooks\n\n| Used in the tutorials |\n|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| - [Federated Reconstruction for Matrix Factorization](https://www.tensorflow.org/federated/tutorials/federated_reconstruction_for_matrix_factorization) - [Federated Learning for Image Classification](https://www.tensorflow.org/federated/tutorials/federated_learning_for_image_classification) - [Composing Learning Algorithms](https://www.tensorflow.org/federated/tutorials/composing_learning_algorithms) - [Differential Privacy in TFF](https://www.tensorflow.org/federated/tutorials/federated_learning_with_differential_privacy) - [TFF simulations with accelerators](https://www.tensorflow.org/federated/tutorials/simulations_with_accelerators) |\n\nThis class supports the simple gradient descent and its variant with momentum.\n\nIf momentum is not used, the update rule given learning rate `lr`, weights `w`\nand gradients `g` is: \n\n w = w - lr * g\n\nIf momentum `m` (a float between `0.0` and `1.0`) is used, the update rule is \n\n v = m * v + g\n w = w - lr * v\n\nwhere `v` is the velocity from previous steps of the optimizer.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-----------------|------------------------------------------------------------------------|\n| `learning_rate` | A positive float for learning rate, default to 0.01. |\n| `momentum` | An optional float between 0.0 and 1.0. If `None`, no momentum is used. |\n\n\u003cbr /\u003e"]]