tensorflow:: ops:: LRN
#include <nn_ops.h>
Local Response Normalization.
Summary
The 4-D input tensor is treated as a 3-D array of 1-D vectors (along the last dimension), and each vector is normalized independently. Within a given vector, each component is divided by the weighted, squared sum of inputs within depth_radius. In detail, 
sqr_sum[a, b, c, d] =
    sum(input[a, b, c, d - depth_radius : d + depth_radius + 1] ** 2)
output = input / (bias + alpha * sqr_sum) ** betaFor details, see Krizhevsky et al., ImageNet classification with deep convolutional neural networks (NIPS 2012).
Args:
- scope: A Scope object
 - input: 4-D.
 
Optional attributes (see Attrs):
- depth_radius: 0-D. Half-width of the 1-D normalization window.
 - bias: An offset (usually positive to avoid dividing by 0).
 - alpha: A scale factor, usually positive.
 - beta: An exponent.
 
Returns:
Output: The output tensor.
Constructors and Destructors | 
|
|---|---|
LRN(const ::tensorflow::Scope & scope, ::tensorflow::Input input)
 | 
|
LRN(const ::tensorflow::Scope & scope, ::tensorflow::Input input, const LRN::Attrs & attrs)
 | 
Public attributes | 
|
|---|---|
operation
 | 
|
output
 | 
|
Public functions | 
|
|---|---|
node() const 
 | 
::tensorflow::Node *
 | 
operator::tensorflow::Input() const 
 | 
 | 
operator::tensorflow::Output() const 
 | 
 | 
Public static functions | 
|
|---|---|
Alpha(float x)
 | 
|
Beta(float x)
 | 
|
Bias(float x)
 | 
|
DepthRadius(int64 x)
 | 
|
Structs | 
|
|---|---|
| 
tensorflow:: | 
 Optional attribute setters for LRN.  | 
Public attributes
operation
Operation operation
output
::tensorflow::Output output
Public functions
LRN
LRN( const ::tensorflow::Scope & scope, ::tensorflow::Input input )
LRN
LRN( const ::tensorflow::Scope & scope, ::tensorflow::Input input, const LRN::Attrs & attrs )
node
::tensorflow::Node * node() const
operator::tensorflow::Input
operator::tensorflow::Input() const
operator::tensorflow::Output
operator::tensorflow::Output() const
Public static functions
Alpha
Attrs Alpha( float x )
Beta
Attrs Beta( float x )
Bias
Attrs Bias( float x )
DepthRadius
Attrs DepthRadius( int64 x )