cifar10

  • Description:

The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images.

Split Examples
'test' 10,000
'train' 50,000
  • Feature structure:
FeaturesDict({
    'id': Text(shape=(), dtype=string),
    'image': Image(shape=(32, 32, 3), dtype=uint8),
    'label': ClassLabel(shape=(), dtype=int64, num_classes=10),
})
  • Feature documentation:
Feature Class Shape Dtype Description
FeaturesDict
id Text string
image Image (32, 32, 3) uint8
label ClassLabel int64

Visualization

  • Citation:
@TECHREPORT{Krizhevsky09learningmultiple,
    author = {Alex Krizhevsky},
    title = {Learning multiple layers of features from tiny images},
    institution = {},
    year = {2009}
}