- Deskripsi :
Versi CIFAR-10 yang diberi label ulang dengan kesalahan anotasi manusia nyata. Untuk setiap pasangan (gambar, label) dalam set kereta CIFAR-10 asli, ini menyediakan beberapa label tambahan yang diberikan oleh anotator manusia asli.
Kode sumber :
tfds.image_classification.cifar10_n.Cifar10N
Versi :
-
1.0.0
: Rilis awal. -
1.0.1
: Memperbaiki salah ketik di kunciworse_label
. -
1.0.2
: Memperbaiki korespondensi antara anotasi dan gambar. -
1.0.3
: Memperbaiki file diMANUAL_DIR
. -
1.0.4
(default): Memperbaiki pemuatan informasi samping.
-
Ukuran unduhan :
162.17 MiB
Ukuran dataset :
147.91 MiB
Instruksi pengunduhan manual : Kumpulan data ini mengharuskan Anda mengunduh data sumber secara manual ke
download_config.manual_dir
(default ke~/tensorflow_datasets/downloads/manual/
):
Unduh 'side_info_cifar10N.csv', 'CIFAR-10_human_ordered.npy' dan 'image_order_c10.npy' dari https://github.com/UCSC-REAL/cifar-10-100n
Kemudian ubah 'CIFAR-10_human_ordered.npy' menjadi file CSV 'CIFAR-10_human_annotations.csv'. Ini dapat dilakukan dengan kode berikut:
import numpy as np
from tensorflow_datasets.core.utils.lazy_imports_utils import pandas as pd
from tensorflow_datasets.core.utils.lazy_imports_utils import tensorflow as tf
human_labels_np_path = '<local_path>/CIFAR-10_human_ordered.npy'
human_labels_csv_path = '<local_path>/CIFAR-10_human_annotations.csv'
with tf.io.gfile.GFile(human_labels_np_path, "rb") as f:
human_annotations = np.load(f, allow_pickle=True)
df = pd.DataFrame(human_annotations[()])
with tf.io.gfile.GFile(human_labels_csv_path, "w") as f:
df.to_csv(f, index=False)
Di-cache otomatis ( dokumentasi ): Ya
Perpecahan :
Membelah | Contoh |
---|---|
'test' | 10.000 |
'train' | 50.000 |
- Struktur fitur :
FeaturesDict({
'aggre_label': ClassLabel(shape=(), dtype=int64, num_classes=10),
'id': Text(shape=(), dtype=string),
'image': Image(shape=(32, 32, 3), dtype=uint8),
'label': ClassLabel(shape=(), dtype=int64, num_classes=10),
'random_label1': ClassLabel(shape=(), dtype=int64, num_classes=10),
'random_label2': ClassLabel(shape=(), dtype=int64, num_classes=10),
'random_label3': ClassLabel(shape=(), dtype=int64, num_classes=10),
'worker1_id': int64,
'worker1_time': float32,
'worker2_id': int64,
'worker2_time': float32,
'worker3_id': int64,
'worker3_time': float32,
'worse_label': ClassLabel(shape=(), dtype=int64, num_classes=10),
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Dtype | Keterangan |
---|---|---|---|---|
fiturDict | ||||
aggre_label | LabelKelas | int64 | ||
Indo | Teks | rangkaian | ||
gambar | Gambar | (32, 32, 3) | uint8 | |
label | LabelKelas | int64 | ||
label_acak1 | LabelKelas | int64 | ||
label_acak2 | LabelKelas | int64 | ||
label_acak3 | LabelKelas | int64 | ||
pekerja1_id | Tensor | int64 | ||
pekerja1_waktu | Tensor | float32 | ||
pekerja2_id | Tensor | int64 | ||
pekerja2_waktu | Tensor | float32 | ||
pekerja3_id | Tensor | int64 | ||
pekerja3_waktu | Tensor | float32 | ||
label_buruk | LabelKelas | int64 |
Kunci yang diawasi (Lihat
as_supervised
doc ):None
Gambar ( tfds.show_examples ):
- Contoh ( tfds.as_dataframe ):
- Kutipan :
@inproceedings{wei2022learning,
title={Learning with Noisy Labels Revisited: A Study Using Real-World Human
Annotations},
author={Jiaheng Wei and Zhaowei Zhu and Hao Cheng and Tongliang Liu and Gang
Niu and Yang Liu},
booktitle={International Conference on Learning Representations},
year={2022},
url={https://openreview.net/forum?id=TBWA6PLJZQm}
}