cmu_stretch

  • Description:

Hello stretch robot kitchen interactions

Split Examples
'train' 135
  • Feature structure:
FeaturesDict({
    'episode_metadata': FeaturesDict({
        'file_path': Text(shape=(), dtype=string),
    }),
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=float32, description=Robot action, consists of [3x ee pos, 3x ee rot 1x gripper binary action, 1x terminate episode].),
        'discount': Scalar(shape=(), dtype=float32, description=Discount if provided, default to 1.),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'language_embedding': Tensor(shape=(512,), dtype=float32, description=Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5),
        'language_instruction': Text(shape=(), dtype=string),
        'observation': FeaturesDict({
            'image': Image(shape=(128, 128, 3), dtype=uint8, description=Main camera RGB observation.),
            'state': Tensor(shape=(4,), dtype=float32, description=Robot state, consists of [3x robot joint angles/ee pos, 1x gripper position].),
        }),
        'reward': Scalar(shape=(), dtype=float32, description=Reward if provided, 1 on final step for demos.),
    }),
})
  • Feature documentation:
Feature Class Shape Dtype Description
FeaturesDict
episode_metadata FeaturesDict
episode_metadata/file_path Text string Path to the original data file.
steps Dataset
steps/action Tensor (8,) float32 Robot action, consists of [3x ee pos, 3x ee rot 1x gripper binary action, 1x terminate episode].
steps/discount Scalar float32 Discount if provided, default to 1.
steps/is_first Tensor bool
steps/is_last Tensor bool
steps/is_terminal Tensor bool
steps/language_embedding Tensor (512,) float32 Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5
steps/language_instruction Text string Language Instruction.
steps/observation FeaturesDict
steps/observation/image Image (128, 128, 3) uint8 Main camera RGB observation.
steps/observation/state Tensor (4,) float32 Robot state, consists of [3x robot joint angles/ee pos, 1x gripper position].
steps/reward Scalar float32 Reward if provided, 1 on final step for demos.
  • Citation:
@inproceedings{bahl2023affordances,
  title={Affordances from Human Videos as a Versatile Representation for Robotics},
  author={Bahl, Shikhar and Mendonca, Russell and Chen, Lili and Jain, Unnat and Pathak, Deepak},
  booktitle={CVPR},
  year={2023}
}
@article{mendonca2023structured,
  title={Structured World Models from Human Videos},
  author={Mendonca, Russell and Bahl, Shikhar and Pathak, Deepak},
  journal={CoRL},
  year={2023}
}