- Description:
Common Sense Explanations (CoS-E) allows for training language models to automatically generate explanations that can be used during training and inference in a novel Commonsense Auto-Generated Explanation (CAGE) framework.
Additional Documentation: Explore on Papers With Code
Homepage: https://github.com/salesforce/cos-e
Source code:
tfds.text.CosE
Versions:
0.0.1
(default): No release notes.
Download size:
6.23 MiB
Dataset size:
3.89 MiB
Auto-cached (documentation): Yes
Splits:
Split | Examples |
---|---|
'train' |
9,741 |
'validation' |
1,221 |
- Feature structure:
FeaturesDict({
'abstractive_explanation': Text(shape=(), dtype=string),
'answer': Text(shape=(), dtype=string),
'choices': Sequence(Text(shape=(), dtype=string)),
'extractive_explanation': Text(shape=(), dtype=string),
'id': Text(shape=(), dtype=string),
'question': Text(shape=(), dtype=string),
})
- Feature documentation:
Feature | Class | Shape | Dtype | Description |
---|---|---|---|---|
FeaturesDict | ||||
abstractive_explanation | Text | string | ||
answer | Text | string | ||
choices | Sequence(Text) | (None,) | string | |
extractive_explanation | Text | string | ||
id | Text | string | ||
question | Text | string |
Supervised keys (See
as_supervised
doc):None
Figure (tfds.show_examples): Not supported.
Examples (tfds.as_dataframe):
- Citation:
@inproceedings{rajani2019explain,
title = "Explain Yourself! Leveraging Language models for Commonsense Reasoning",
author = "Rajani, Nazneen Fatema and
McCann, Bryan and
Xiong, Caiming and
Socher, Richard",
year="2019",
booktitle = "Proceedings of the 2019 Conference of the Association for Computational Linguistics (ACL2019)",
url ="https://arxiv.org/abs/1906.02361"
}