duque_ultrasonido

  • Descripción :

DukeUltrasound es un conjunto de datos de ultrasonido recopilados en la Universidad de Duke con una sonda Verasonics c52v. Contiene datos formados por haz de retardo y suma (DAS), así como datos posprocesados ​​con Siemens Dynamic TCE para reducir las manchas, mejorar el contraste y mejorar la visibilidad de las estructuras anatómicas. Estos datos se recopilaron con el apoyo del Instituto Nacional de Imágenes Biomédicas y Bioingeniería bajo la subvención R01-EB026574 y los Institutos Nacionales de Salud bajo la subvención 5T32GM007171-44. Un ejemplo de uso está disponible aquí .

  • Página de inicio : https://github.com/ouwen/mimicknet

  • Código fuente : tfds.datasets.duke_ultrasound.Builder

  • Versiones :

    • 1.0.0 : versión inicial.
    • 1.0.1 : Corrige el análisis del harmonic de campo booleano.
    • 2.0.0 (predeterminado) : corrige timestamp_id de %Y%m%d%H%M%S a posix timestamp.
  • Tamaño de descarga : 12.78 GiB

  • Tamaño del conjunto de datos : 13.79 GiB

  • Almacenamiento en caché automático ( documentación ): No

  • Divisiones :

Dividir Ejemplos
'A' 1.362
'B' 1,194
'MARK' 420
'test' 438
'train' 2.556
'validation' 278
  • Estructura de características :
FeaturesDict({
    'das': FeaturesDict({
        'dB': Tensor(shape=(None,), dtype=float32),
        'imag': Tensor(shape=(None,), dtype=float32),
        'real': Tensor(shape=(None,), dtype=float32),
    }),
    'dtce': Tensor(shape=(None,), dtype=float32),
    'f0_hz': float32,
    'final_angle': float32,
    'final_radius': float32,
    'focus_cm': float32,
    'harmonic': bool,
    'height': uint32,
    'initial_angle': float32,
    'initial_radius': float32,
    'probe': string,
    'scanner': string,
    'target': string,
    'timestamp_id': uint32,
    'voltage': float32,
    'width': uint32,
})
  • Documentación de funciones :
Característica Clase Forma tipo D Descripción
FuncionesDict
da FuncionesDict
das/dB Tensor (Ninguno,) flotador32
das/imag Tensor (Ninguno,) flotador32
das/real Tensor (Ninguno,) flotador32
dtce Tensor (Ninguno,) flotador32
f0_hz Tensor flotador32
ángulo_final Tensor flotador32
radio_final Tensor flotador32
foco_cm Tensor flotador32
armónico Tensor booleano
altura Tensor uint32
ángulo_inicial Tensor flotador32
radio_inicial Tensor flotador32
sonda Tensor cadena
escáner Tensor cadena
objetivo Tensor cadena
marca de tiempo_id Tensor uint32
Voltaje Tensor flotador32
ancho Tensor uint32
  • Cita :
@article{DBLP:journals/corr/abs-1908-05782,
  author    = {Ouwen Huang and
               Will Long and
               Nick Bottenus and
               Gregg E. Trahey and
               Sina Farsiu and
               Mark L. Palmeri},
  title     = {MimickNet, Matching Clinical Post-Processing Under Realistic Black-Box
               Constraints},
  journal   = {CoRR},
  volume    = {abs/1908.05782},
  year      = {2019},
  url       = {http://arxiv.org/abs/1908.05782},
  archivePrefix = {arXiv},
  eprint    = {1908.05782},
  timestamp = {Mon, 19 Aug 2019 13:21:03 +0200},
  biburl    = {https://dblp.org/rec/bib/journals/corr/abs-1908-05782},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}