- Deskripsi :
Kumpulan data dasar pemikiran film berisi alasan beranotasi manusia untuk ulasan film.
Kode sumber :
tfds.text.MovieRationales
Versi :
-
0.1.0
(default): Tidak ada catatan rilis.
-
Ukuran unduhan :
3.72 MiB
Ukuran dataset :
8.37 MiB
Di-cache otomatis ( dokumentasi ): Ya
Perpecahan :
Membelah | Contoh |
---|---|
'test' | 199 |
'train' | 1.600 |
'validation' | 200 |
- Struktur fitur :
FeaturesDict({
'evidences': Sequence(Text(shape=(), dtype=string)),
'label': ClassLabel(shape=(), dtype=int64, num_classes=2),
'review': Text(shape=(), dtype=string),
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Dtype | Keterangan |
---|---|---|---|---|
fiturDict | ||||
bukti | Urutan (Teks) | (Tidak ada,) | rangkaian | |
label | LabelKelas | int64 | ||
tinjauan | Teks | rangkaian |
Kunci yang diawasi (Lihat
as_supervised
doc ):None
Gambar ( tfds.show_examples ): Tidak didukung.
Contoh ( tfds.as_dataframe ):
- Kutipan :
@unpublished{eraser2019,
title = {ERASER: A Benchmark to Evaluate Rationalized NLP Models},
author = {Jay DeYoung and Sarthak Jain and Nazneen Fatema Rajani and Eric Lehman and Caiming Xiong and Richard Socher and Byron C. Wallace}
}
@InProceedings{zaidan-eisner-piatko-2008:nips,
author = {Omar F. Zaidan and Jason Eisner and Christine Piatko},
title = {Machine Learning with Annotator Rationales to Reduce Annotation Cost},
booktitle = {Proceedings of the NIPS*2008 Workshop on Cost Sensitive Learning},
month = {December},
year = {2008}
}