- Deskripsi :
RL Unplugged adalah rangkaian tolok ukur untuk pembelajaran penguatan offline. RL Unplugged dirancang berdasarkan pertimbangan berikut: untuk memfasilitasi kemudahan penggunaan, kami menyediakan dataset dengan API terpadu yang memudahkan praktisi untuk bekerja dengan semua data dalam suite setelah pipeline umum dibuat.
Kumpulan data mengikuti format RLDS untuk mewakili langkah dan episode.
Contoh dalam kumpulan data mewakili transisi SAR yang disimpan saat menjalankan agen terlatih online sebagian seperti yang dijelaskan di https://arxiv.org/abs/1904.12901 Kami mengikuti format kumpulan data RLDS, sebagaimana ditentukan dalam https://github.com/google-research /rlds#format-set data
Kami merilis 40 set data pada total 8 tugas -- tanpa tantangan gabungan dan tantangan gabungan mudah pada tugas cartpole, walker, quadruped, dan humanoid. Setiap tugas berisi 5 ukuran dataset yang berbeda, 1%, 5%, 20%, 40%, dan 100%. Perhatikan bahwa kumpulan data yang lebih kecil tidak dijamin menjadi bagian dari kumpulan data yang lebih besar. Untuk perincian tentang bagaimana set data dihasilkan, silakan merujuk ke makalah.
Beranda : https://github.com/deepmind/deepmind-research/tree/master/rl_unplugged
Kode sumber :
tfds.rl_unplugged.rlu_rwrl.RluRwrl
Versi :
-
1.0.0
: Rilis awal. -
1.0.1
(default): Memperbaiki bug di dataset RLU RWRL di mana ada id episode duplikat di salah satu dataset humanoid.
-
Ukuran unduhan :
Unknown size
Kunci yang diawasi (Lihat
as_supervised
doc ):None
Gambar ( tfds.show_examples ): Tidak didukung.
Kutipan :
@misc{gulcehre2020rl,
title={RL Unplugged: Benchmarks for Offline Reinforcement Learning},
author={Caglar Gulcehre and Ziyu Wang and Alexander Novikov and Tom Le Paine
and Sergio Gómez Colmenarejo and Konrad Zolna and Rishabh Agarwal and
Josh Merel and Daniel Mankowitz and Cosmin Paduraru and Gabriel
Dulac-Arnold and Jerry Li and Mohammad Norouzi and Matt Hoffman and
Ofir Nachum and George Tucker and Nicolas Heess and Nando deFreitas},
year={2020},
eprint={2006.13888},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
rlu_rwrl/cartpole_swingup_combined_challenge_none_1_percent (konfigurasi default)
Ukuran dataset :
172.43 KiB
Di-cache otomatis ( dokumentasi ): Ya
Perpecahan :
Membelah | Contoh |
---|---|
'train' | 5 |
- Struktur fitur :
FeaturesDict({
'episode_return': float32,
'steps': Dataset({
'action': Tensor(shape=(1,), dtype=float32),
'discount': Tensor(shape=(1,), dtype=float32),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': FeaturesDict({
'position': Tensor(shape=(3,), dtype=float32),
'velocity': Tensor(shape=(2,), dtype=float32),
}),
'reward': Tensor(shape=(1,), dtype=float32),
}),
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Dtype | Keterangan |
---|---|---|---|---|
fiturDict | ||||
episode_return | Tensor | float32 | ||
Langkah | Himpunan data | |||
langkah/tindakan | Tensor | (1,) | float32 | |
langkah/diskon | Tensor | (1,) | float32 | |
langkah/adalah_pertama | Tensor | bool | ||
langkah/is_last | Tensor | bool | ||
langkah/is_terminal | Tensor | bool | ||
langkah/pengamatan | fiturDict | |||
langkah/pengamatan/posisi | Tensor | (3,) | float32 | |
langkah/pengamatan/kecepatan | Tensor | (2,) | float32 | |
langkah/hadiah | Tensor | (1,) | float32 |
- Contoh ( tfds.as_dataframe ):
rlu_rwrl/cartpole_swingup_combined_challenge_none_5_percent
Ukuran dataset :
862.13 KiB
Di-cache otomatis ( dokumentasi ): Ya
Perpecahan :
Membelah | Contoh |
---|---|
'train' | 25 |
- Struktur fitur :
FeaturesDict({
'episode_return': float32,
'steps': Dataset({
'action': Tensor(shape=(1,), dtype=float32),
'discount': Tensor(shape=(1,), dtype=float32),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': FeaturesDict({
'position': Tensor(shape=(3,), dtype=float32),
'velocity': Tensor(shape=(2,), dtype=float32),
}),
'reward': Tensor(shape=(1,), dtype=float32),
}),
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Dtype | Keterangan |
---|---|---|---|---|
fiturDict | ||||
episode_return | Tensor | float32 | ||
Langkah | Himpunan data | |||
langkah/tindakan | Tensor | (1,) | float32 | |
langkah/diskon | Tensor | (1,) | float32 | |
langkah/adalah_pertama | Tensor | bool | ||
langkah/is_last | Tensor | bool | ||
langkah/is_terminal | Tensor | bool | ||
langkah/pengamatan | fiturDict | |||
langkah/pengamatan/posisi | Tensor | (3,) | float32 | |
langkah/pengamatan/kecepatan | Tensor | (2,) | float32 | |
langkah/hadiah | Tensor | (1,) | float32 |
- Contoh ( tfds.as_dataframe ):
rlu_rwrl/cartpole_swingup_combined_challenge_none_20_percent
Ukuran dataset :
3.37 MiB
Di-cache otomatis ( dokumentasi ): Ya
Perpecahan :
Membelah | Contoh |
---|---|
'train' | 100 |
- Struktur fitur :
FeaturesDict({
'episode_return': float32,
'steps': Dataset({
'action': Tensor(shape=(1,), dtype=float32),
'discount': Tensor(shape=(1,), dtype=float32),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': FeaturesDict({
'position': Tensor(shape=(3,), dtype=float32),
'velocity': Tensor(shape=(2,), dtype=float32),
}),
'reward': Tensor(shape=(1,), dtype=float32),
}),
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Dtype | Keterangan |
---|---|---|---|---|
fiturDict | ||||
episode_return | Tensor | float32 | ||
Langkah | Himpunan data | |||
langkah/tindakan | Tensor | (1,) | float32 | |
langkah/diskon | Tensor | (1,) | float32 | |
langkah/adalah_pertama | Tensor | bool | ||
langkah/is_last | Tensor | bool | ||
langkah/is_terminal | Tensor | bool | ||
langkah/pengamatan | fiturDict | |||
langkah/pengamatan/posisi | Tensor | (3,) | float32 | |
langkah/pengamatan/kecepatan | Tensor | (2,) | float32 | |
langkah/hadiah | Tensor | (1,) | float32 |
- Contoh ( tfds.as_dataframe ):
rlu_rwrl/cartpole_swingup_combined_challenge_none_40_percent
Ukuran dataset :
6.74 MiB
Di-cache otomatis ( dokumentasi ): Ya
Perpecahan :
Membelah | Contoh |
---|---|
'train' | 200 |
- Struktur fitur :
FeaturesDict({
'episode_return': float32,
'steps': Dataset({
'action': Tensor(shape=(1,), dtype=float32),
'discount': Tensor(shape=(1,), dtype=float32),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': FeaturesDict({
'position': Tensor(shape=(3,), dtype=float32),
'velocity': Tensor(shape=(2,), dtype=float32),
}),
'reward': Tensor(shape=(1,), dtype=float32),
}),
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Dtype | Keterangan |
---|---|---|---|---|
fiturDict | ||||
episode_return | Tensor | float32 | ||
Langkah | Himpunan data | |||
langkah/tindakan | Tensor | (1,) | float32 | |
langkah/diskon | Tensor | (1,) | float32 | |
langkah/adalah_pertama | Tensor | bool | ||
langkah/is_last | Tensor | bool | ||
langkah/is_terminal | Tensor | bool | ||
langkah/pengamatan | fiturDict | |||
langkah/pengamatan/posisi | Tensor | (3,) | float32 | |
langkah/pengamatan/kecepatan | Tensor | (2,) | float32 | |
langkah/hadiah | Tensor | (1,) | float32 |
- Contoh ( tfds.as_dataframe ):
rlu_rwrl/cartpole_swingup_combined_challenge_none_100_percent
Ukuran dataset :
16.84 MiB
Di-cache otomatis ( dokumentasi ): Ya
Perpecahan :
Membelah | Contoh |
---|---|
'train' | 500 |
- Struktur fitur :
FeaturesDict({
'episode_return': float32,
'steps': Dataset({
'action': Tensor(shape=(1,), dtype=float32),
'discount': Tensor(shape=(1,), dtype=float32),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': FeaturesDict({
'position': Tensor(shape=(3,), dtype=float32),
'velocity': Tensor(shape=(2,), dtype=float32),
}),
'reward': Tensor(shape=(1,), dtype=float32),
}),
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Dtype | Keterangan |
---|---|---|---|---|
fiturDict | ||||
episode_return | Tensor | float32 | ||
Langkah | Himpunan data | |||
langkah/tindakan | Tensor | (1,) | float32 | |
langkah/diskon | Tensor | (1,) | float32 | |
langkah/adalah_pertama | Tensor | bool | ||
langkah/is_last | Tensor | bool | ||
langkah/is_terminal | Tensor | bool | ||
langkah/pengamatan | fiturDict | |||
langkah/pengamatan/posisi | Tensor | (3,) | float32 | |
langkah/pengamatan/kecepatan | Tensor | (2,) | float32 | |
langkah/hadiah | Tensor | (1,) | float32 |
- Contoh ( tfds.as_dataframe ):
rlu_rwrl/quadruped_walk_combined_challenge_none_1_percent
Ukuran dataset :
1.77 MiB
Di-cache otomatis ( dokumentasi ): Ya
Perpecahan :
Membelah | Contoh |
---|---|
'train' | 5 |
- Struktur fitur :
FeaturesDict({
'episode_return': float32,
'steps': Dataset({
'action': Tensor(shape=(12,), dtype=float32),
'discount': Tensor(shape=(1,), dtype=float32),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': FeaturesDict({
'egocentric_state': Tensor(shape=(44,), dtype=float32),
'force_torque': Tensor(shape=(24,), dtype=float32),
'imu': Tensor(shape=(6,), dtype=float32),
'torso_upright': Tensor(shape=(1,), dtype=float32),
'torso_velocity': Tensor(shape=(3,), dtype=float32),
}),
'reward': Tensor(shape=(1,), dtype=float32),
}),
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Dtype | Keterangan |
---|---|---|---|---|
fiturDict | ||||
episode_return | Tensor | float32 | ||
Langkah | Himpunan data | |||
langkah/tindakan | Tensor | (12,) | float32 | |
langkah/diskon | Tensor | (1,) | float32 | |
langkah/adalah_pertama | Tensor | bool | ||
langkah/is_last | Tensor | bool | ||
langkah/is_terminal | Tensor | bool | ||
langkah/pengamatan | fiturDict | |||
langkah/pengamatan/status_egosentris | Tensor | (44,) | float32 | |
langkah/pengamatan/force_torque | Tensor | (24,) | float32 | |
langkah/pengamatan/imu | Tensor | (6,) | float32 | |
langkah/pengamatan/torso_upright | Tensor | (1,) | float32 | |
langkah/pengamatan/kecepatan_torso | Tensor | (3,) | float32 | |
langkah/hadiah | Tensor | (1,) | float32 |
- Contoh ( tfds.as_dataframe ):
rlu_rwrl/quadruped_walk_combined_challenge_none_5_percent
Ukuran dataset :
8.86 MiB
Di-cache otomatis ( dokumentasi ): Ya
Perpecahan :
Membelah | Contoh |
---|---|
'train' | 25 |
- Struktur fitur :
FeaturesDict({
'episode_return': float32,
'steps': Dataset({
'action': Tensor(shape=(12,), dtype=float32),
'discount': Tensor(shape=(1,), dtype=float32),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': FeaturesDict({
'egocentric_state': Tensor(shape=(44,), dtype=float32),
'force_torque': Tensor(shape=(24,), dtype=float32),
'imu': Tensor(shape=(6,), dtype=float32),
'torso_upright': Tensor(shape=(1,), dtype=float32),
'torso_velocity': Tensor(shape=(3,), dtype=float32),
}),
'reward': Tensor(shape=(1,), dtype=float32),
}),
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Dtype | Keterangan |
---|---|---|---|---|
fiturDict | ||||
episode_return | Tensor | float32 | ||
Langkah | Himpunan data | |||
langkah/tindakan | Tensor | (12,) | float32 | |
langkah/diskon | Tensor | (1,) | float32 | |
langkah/adalah_pertama | Tensor | bool | ||
langkah/is_last | Tensor | bool | ||
langkah/is_terminal | Tensor | bool | ||
langkah/pengamatan | fiturDict | |||
langkah/pengamatan/status_egosentris | Tensor | (44,) | float32 | |
langkah/pengamatan/force_torque | Tensor | (24,) | float32 | |
langkah/pengamatan/imu | Tensor | (6,) | float32 | |
langkah/pengamatan/torso_upright | Tensor | (1,) | float32 | |
langkah/pengamatan/kecepatan_torso | Tensor | (3,) | float32 | |
langkah/hadiah | Tensor | (1,) | float32 |
- Contoh ( tfds.as_dataframe ):
rlu_rwrl/quadruped_walk_combined_challenge_none_20_percent
Ukuran dataset :
35.46 MiB
Di-cache otomatis ( dokumentasi ): Ya
Perpecahan :
Membelah | Contoh |
---|---|
'train' | 100 |
- Struktur fitur :
FeaturesDict({
'episode_return': float32,
'steps': Dataset({
'action': Tensor(shape=(12,), dtype=float32),
'discount': Tensor(shape=(1,), dtype=float32),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': FeaturesDict({
'egocentric_state': Tensor(shape=(44,), dtype=float32),
'force_torque': Tensor(shape=(24,), dtype=float32),
'imu': Tensor(shape=(6,), dtype=float32),
'torso_upright': Tensor(shape=(1,), dtype=float32),
'torso_velocity': Tensor(shape=(3,), dtype=float32),
}),
'reward': Tensor(shape=(1,), dtype=float32),
}),
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Dtype | Keterangan |
---|---|---|---|---|
fiturDict | ||||
episode_return | Tensor | float32 | ||
Langkah | Himpunan data | |||
langkah/tindakan | Tensor | (12,) | float32 | |
langkah/diskon | Tensor | (1,) | float32 | |
langkah/adalah_pertama | Tensor | bool | ||
langkah/is_last | Tensor | bool | ||
langkah/is_terminal | Tensor | bool | ||
langkah/pengamatan | fiturDict | |||
langkah/pengamatan/status_egosentris | Tensor | (44,) | float32 | |
langkah/pengamatan/force_torque | Tensor | (24,) | float32 | |
langkah/pengamatan/imu | Tensor | (6,) | float32 | |
langkah/pengamatan/torso_upright | Tensor | (1,) | float32 | |
langkah/pengamatan/kecepatan_torso | Tensor | (3,) | float32 | |
langkah/hadiah | Tensor | (1,) | float32 |
- Contoh ( tfds.as_dataframe ):
rlu_rwrl/quadruped_walk_combined_challenge_none_40_percent
Ukuran dataset :
70.92 MiB
Di-cache otomatis ( dokumentasi ): Ya
Perpecahan :
Membelah | Contoh |
---|---|
'train' | 200 |
- Struktur fitur :
FeaturesDict({
'episode_return': float32,
'steps': Dataset({
'action': Tensor(shape=(12,), dtype=float32),
'discount': Tensor(shape=(1,), dtype=float32),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': FeaturesDict({
'egocentric_state': Tensor(shape=(44,), dtype=float32),
'force_torque': Tensor(shape=(24,), dtype=float32),
'imu': Tensor(shape=(6,), dtype=float32),
'torso_upright': Tensor(shape=(1,), dtype=float32),
'torso_velocity': Tensor(shape=(3,), dtype=float32),
}),
'reward': Tensor(shape=(1,), dtype=float32),
}),
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Dtype | Keterangan |
---|---|---|---|---|
fiturDict | ||||
episode_return | Tensor | float32 | ||
Langkah | Himpunan data | |||
langkah/tindakan | Tensor | (12,) | float32 | |
langkah/diskon | Tensor | (1,) | float32 | |
langkah/adalah_pertama | Tensor | bool | ||
langkah/is_last | Tensor | bool | ||
langkah/is_terminal | Tensor | bool | ||
langkah/pengamatan | fiturDict | |||
langkah/pengamatan/status_egosentris | Tensor | (44,) | float32 | |
langkah/pengamatan/force_torque | Tensor | (24,) | float32 | |
langkah/pengamatan/imu | Tensor | (6,) | float32 | |
langkah/pengamatan/torso_upright | Tensor | (1,) | float32 | |
langkah/pengamatan/kecepatan_torso | Tensor | (3,) | float32 | |
langkah/hadiah | Tensor | (1,) | float32 |
- Contoh ( tfds.as_dataframe ):
rlu_rwrl/quadruped_walk_combined_challenge_none_100_percent
Ukuran dataset :
177.29 MiB
Auto-cached ( dokumentasi ): Hanya ketika
shuffle_files=False
(train)Perpecahan :
Membelah | Contoh |
---|---|
'train' | 500 |
- Struktur fitur :
FeaturesDict({
'episode_return': float32,
'steps': Dataset({
'action': Tensor(shape=(12,), dtype=float32),
'discount': Tensor(shape=(1,), dtype=float32),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': FeaturesDict({
'egocentric_state': Tensor(shape=(44,), dtype=float32),
'force_torque': Tensor(shape=(24,), dtype=float32),
'imu': Tensor(shape=(6,), dtype=float32),
'torso_upright': Tensor(shape=(1,), dtype=float32),
'torso_velocity': Tensor(shape=(3,), dtype=float32),
}),
'reward': Tensor(shape=(1,), dtype=float32),
}),
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Dtype | Keterangan |
---|---|---|---|---|
fiturDict | ||||
episode_return | Tensor | float32 | ||
Langkah | Himpunan data | |||
langkah/tindakan | Tensor | (12,) | float32 | |
langkah/diskon | Tensor | (1,) | float32 | |
langkah/adalah_pertama | Tensor | bool | ||
langkah/is_last | Tensor | bool | ||
langkah/is_terminal | Tensor | bool | ||
langkah/pengamatan | fiturDict | |||
langkah/pengamatan/status_egosentris | Tensor | (44,) | float32 | |
langkah/pengamatan/force_torque | Tensor | (24,) | float32 | |
langkah/pengamatan/imu | Tensor | (6,) | float32 | |
langkah/pengamatan/torso_upright | Tensor | (1,) | float32 | |
langkah/pengamatan/kecepatan_torso | Tensor | (3,) | float32 | |
langkah/hadiah | Tensor | (1,) | float32 |
- Contoh ( tfds.as_dataframe ):
rlu_rwrl/walker_walk_combined_challenge_none_1_percent
Ukuran dataset :
6.27 MiB
Di-cache otomatis ( dokumentasi ): Ya
Perpecahan :
Membelah | Contoh |
---|---|
'train' | 50 |
- Struktur fitur :
FeaturesDict({
'episode_return': float32,
'steps': Dataset({
'action': Tensor(shape=(6,), dtype=float32),
'discount': Tensor(shape=(1,), dtype=float32),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': FeaturesDict({
'height': Tensor(shape=(1,), dtype=float32),
'orientations': Tensor(shape=(14,), dtype=float32),
'velocity': Tensor(shape=(9,), dtype=float32),
}),
'reward': Tensor(shape=(1,), dtype=float32),
}),
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Dtype | Keterangan |
---|---|---|---|---|
fiturDict | ||||
episode_return | Tensor | float32 | ||
Langkah | Himpunan data | |||
langkah/tindakan | Tensor | (6,) | float32 | |
langkah/diskon | Tensor | (1,) | float32 | |
langkah/adalah_pertama | Tensor | bool | ||
langkah/is_last | Tensor | bool | ||
langkah/is_terminal | Tensor | bool | ||
langkah/pengamatan | fiturDict | |||
langkah/observasi/tinggi | Tensor | (1,) | float32 | |
langkah/pengamatan/orientasi | Tensor | (14,) | float32 | |
langkah/pengamatan/kecepatan | Tensor | (9,) | float32 | |
langkah/hadiah | Tensor | (1,) | float32 |
- Contoh ( tfds.as_dataframe ):
rlu_rwrl/walker_walk_combined_challenge_none_5_percent
Ukuran dataset :
31.34 MiB
Di-cache otomatis ( dokumentasi ): Ya
Perpecahan :
Membelah | Contoh |
---|---|
'train' | 250 |
- Struktur fitur :
FeaturesDict({
'episode_return': float32,
'steps': Dataset({
'action': Tensor(shape=(6,), dtype=float32),
'discount': Tensor(shape=(1,), dtype=float32),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': FeaturesDict({
'height': Tensor(shape=(1,), dtype=float32),
'orientations': Tensor(shape=(14,), dtype=float32),
'velocity': Tensor(shape=(9,), dtype=float32),
}),
'reward': Tensor(shape=(1,), dtype=float32),
}),
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Dtype | Keterangan |
---|---|---|---|---|
fiturDict | ||||
episode_return | Tensor | float32 | ||
Langkah | Himpunan data | |||
langkah/tindakan | Tensor | (6,) | float32 | |
langkah/diskon | Tensor | (1,) | float32 | |
langkah/adalah_pertama | Tensor | bool | ||
langkah/is_last | Tensor | bool | ||
langkah/is_terminal | Tensor | bool | ||
langkah/pengamatan | fiturDict | |||
langkah/observasi/tinggi | Tensor | (1,) | float32 | |
langkah/pengamatan/orientasi | Tensor | (14,) | float32 | |
langkah/pengamatan/kecepatan | Tensor | (9,) | float32 | |
langkah/hadiah | Tensor | (1,) | float32 |
- Contoh ( tfds.as_dataframe ):
rlu_rwrl/walker_walk_combined_challenge_none_20_percent
Ukuran dataset :
125.37 MiB
Di-cache otomatis ( dokumentasi ): Ya
Perpecahan :
Membelah | Contoh |
---|---|
'train' | 1.000 |
- Struktur fitur :
FeaturesDict({
'episode_return': float32,
'steps': Dataset({
'action': Tensor(shape=(6,), dtype=float32),
'discount': Tensor(shape=(1,), dtype=float32),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': FeaturesDict({
'height': Tensor(shape=(1,), dtype=float32),
'orientations': Tensor(shape=(14,), dtype=float32),
'velocity': Tensor(shape=(9,), dtype=float32),
}),
'reward': Tensor(shape=(1,), dtype=float32),
}),
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Dtype | Keterangan |
---|---|---|---|---|
fiturDict | ||||
episode_return | Tensor | float32 | ||
Langkah | Himpunan data | |||
langkah/tindakan | Tensor | (6,) | float32 | |
langkah/diskon | Tensor | (1,) | float32 | |
langkah/adalah_pertama | Tensor | bool | ||
langkah/is_last | Tensor | bool | ||
langkah/is_terminal | Tensor | bool | ||
langkah/pengamatan | fiturDict | |||
langkah/observasi/tinggi | Tensor | (1,) | float32 | |
langkah/pengamatan/orientasi | Tensor | (14,) | float32 | |
langkah/pengamatan/kecepatan | Tensor | (9,) | float32 | |
langkah/hadiah | Tensor | (1,) | float32 |
- Contoh ( tfds.as_dataframe ):
rlu_rwrl/walker_walk_combined_challenge_none_40_percent
Ukuran dataset :
250.75 MiB
Di-cache otomatis ( dokumentasi ): Tidak
Perpecahan :
Membelah | Contoh |
---|---|
'train' | 2.000 |
- Struktur fitur :
FeaturesDict({
'episode_return': float32,
'steps': Dataset({
'action': Tensor(shape=(6,), dtype=float32),
'discount': Tensor(shape=(1,), dtype=float32),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': FeaturesDict({
'height': Tensor(shape=(1,), dtype=float32),
'orientations': Tensor(shape=(14,), dtype=float32),
'velocity': Tensor(shape=(9,), dtype=float32),
}),
'reward': Tensor(shape=(1,), dtype=float32),
}),
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Dtype | Keterangan |
---|---|---|---|---|
fiturDict | ||||
episode_return | Tensor | float32 | ||
Langkah | Himpunan data | |||
langkah/tindakan | Tensor | (6,) | float32 | |
langkah/diskon | Tensor | (1,) | float32 | |
langkah/adalah_pertama | Tensor | bool | ||
langkah/is_last | Tensor | bool | ||
langkah/is_terminal | Tensor | bool | ||
langkah/pengamatan | fiturDict | |||
langkah/observasi/tinggi | Tensor | (1,) | float32 | |
langkah/pengamatan/orientasi | Tensor | (14,) | float32 | |
langkah/pengamatan/kecepatan | Tensor | (9,) | float32 | |
langkah/hadiah | Tensor | (1,) | float32 |
- Contoh ( tfds.as_dataframe ):
rlu_rwrl/walker_walk_combined_challenge_none_100_percent
Ukuran dataset :
626.86 MiB
Di-cache otomatis ( dokumentasi ): Tidak
Perpecahan :
Membelah | Contoh |
---|---|
'train' | 5.000 |
- Struktur fitur :
FeaturesDict({
'episode_return': float32,
'steps': Dataset({
'action': Tensor(shape=(6,), dtype=float32),
'discount': Tensor(shape=(1,), dtype=float32),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': FeaturesDict({
'height': Tensor(shape=(1,), dtype=float32),
'orientations': Tensor(shape=(14,), dtype=float32),
'velocity': Tensor(shape=(9,), dtype=float32),
}),
'reward': Tensor(shape=(1,), dtype=float32),
}),
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Dtype | Keterangan |
---|---|---|---|---|
fiturDict | ||||
episode_return | Tensor | float32 | ||
Langkah | Himpunan data | |||
langkah/tindakan | Tensor | (6,) | float32 | |
langkah/diskon | Tensor | (1,) | float32 | |
langkah/adalah_pertama | Tensor | bool | ||
langkah/is_last | Tensor | bool | ||
langkah/is_terminal | Tensor | bool | ||
langkah/pengamatan | fiturDict | |||
langkah/observasi/tinggi | Tensor | (1,) | float32 | |
langkah/pengamatan/orientasi | Tensor | (14,) | float32 | |
langkah/pengamatan/kecepatan | Tensor | (9,) | float32 | |
langkah/hadiah | Tensor | (1,) | float32 |
- Contoh ( tfds.as_dataframe ):
rlu_rwrl/humanoid_walk_combined_challenge_none_1_percent
Ukuran dataset :
69.40 MiB
Di-cache otomatis ( dokumentasi ): Ya
Perpecahan :
Membelah | Contoh |
---|---|
'train' | 200 |
- Struktur fitur :
FeaturesDict({
'episode_return': float32,
'steps': Dataset({
'action': Tensor(shape=(21,), dtype=float32),
'discount': Tensor(shape=(1,), dtype=float32),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': FeaturesDict({
'com_velocity': Tensor(shape=(3,), dtype=float32),
'extremities': Tensor(shape=(12,), dtype=float32),
'head_height': Tensor(shape=(1,), dtype=float32),
'joint_angles': Tensor(shape=(21,), dtype=float32),
'torso_vertical': Tensor(shape=(3,), dtype=float32),
'velocity': Tensor(shape=(27,), dtype=float32),
}),
'reward': Tensor(shape=(1,), dtype=float32),
}),
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Dtype | Keterangan |
---|---|---|---|---|
fiturDict | ||||
episode_return | Tensor | float32 | ||
Langkah | Himpunan data | |||
langkah/tindakan | Tensor | (21,) | float32 | |
langkah/diskon | Tensor | (1,) | float32 | |
langkah/adalah_pertama | Tensor | bool | ||
langkah/is_last | Tensor | bool | ||
langkah/is_terminal | Tensor | bool | ||
langkah/pengamatan | fiturDict | |||
langkah/pengamatan/com_velocity | Tensor | (3,) | float32 | |
langkah/observasi/ekstremitas | Tensor | (12,) | float32 | |
langkah/pengamatan/head_height | Tensor | (1,) | float32 | |
langkah/pengamatan/joint_angles | Tensor | (21,) | float32 | |
langkah/pengamatan/torso_vertical | Tensor | (3,) | float32 | |
langkah/pengamatan/kecepatan | Tensor | (27,) | float32 | |
langkah/hadiah | Tensor | (1,) | float32 |
- Contoh ( tfds.as_dataframe ):
rlu_rwrl/humanoid_walk_combined_challenge_none_5_percent
Ukuran dataset :
346.98 MiB
Di-cache otomatis ( dokumentasi ): Tidak
Perpecahan :
Membelah | Contoh |
---|---|
'train' | 1.000 |
- Struktur fitur :
FeaturesDict({
'episode_return': float32,
'steps': Dataset({
'action': Tensor(shape=(21,), dtype=float32),
'discount': Tensor(shape=(1,), dtype=float32),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': FeaturesDict({
'com_velocity': Tensor(shape=(3,), dtype=float32),
'extremities': Tensor(shape=(12,), dtype=float32),
'head_height': Tensor(shape=(1,), dtype=float32),
'joint_angles': Tensor(shape=(21,), dtype=float32),
'torso_vertical': Tensor(shape=(3,), dtype=float32),
'velocity': Tensor(shape=(27,), dtype=float32),
}),
'reward': Tensor(shape=(1,), dtype=float32),
}),
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Dtype | Keterangan |
---|---|---|---|---|
fiturDict | ||||
episode_return | Tensor | float32 | ||
Langkah | Himpunan data | |||
langkah/tindakan | Tensor | (21,) | float32 | |
langkah/diskon | Tensor | (1,) | float32 | |
langkah/adalah_pertama | Tensor | bool | ||
langkah/is_last | Tensor | bool | ||
langkah/is_terminal | Tensor | bool | ||
langkah/pengamatan | fiturDict | |||
langkah/pengamatan/com_velocity | Tensor | (3,) | float32 | |
langkah/observasi/ekstremitas | Tensor | (12,) | float32 | |
langkah/pengamatan/head_height | Tensor | (1,) | float32 | |
langkah/pengamatan/joint_angles | Tensor | (21,) | float32 | |
langkah/pengamatan/torso_vertical | Tensor | (3,) | float32 | |
langkah/pengamatan/kecepatan | Tensor | (27,) | float32 | |
langkah/hadiah | Tensor | (1,) | float32 |
- Contoh ( tfds.as_dataframe ):
rlu_rwrl/humanoid_walk_combined_challenge_none_20_percent
Ukuran dataset :
1.36 GiB
Di-cache otomatis ( dokumentasi ): Tidak
Perpecahan :
Membelah | Contoh |
---|---|
'train' | 4.000 |
- Struktur fitur :
FeaturesDict({
'episode_return': float32,
'steps': Dataset({
'action': Tensor(shape=(21,), dtype=float32),
'discount': Tensor(shape=(1,), dtype=float32),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': FeaturesDict({
'com_velocity': Tensor(shape=(3,), dtype=float32),
'extremities': Tensor(shape=(12,), dtype=float32),
'head_height': Tensor(shape=(1,), dtype=float32),
'joint_angles': Tensor(shape=(21,), dtype=float32),
'torso_vertical': Tensor(shape=(3,), dtype=float32),
'velocity': Tensor(shape=(27,), dtype=float32),
}),
'reward': Tensor(shape=(1,), dtype=float32),
}),
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Dtype | Keterangan |
---|---|---|---|---|
fiturDict | ||||
episode_return | Tensor | float32 | ||
Langkah | Himpunan data | |||
langkah/tindakan | Tensor | (21,) | float32 | |
langkah/diskon | Tensor | (1,) | float32 | |
langkah/adalah_pertama | Tensor | bool | ||
langkah/is_last | Tensor | bool | ||
langkah/is_terminal | Tensor | bool | ||
langkah/pengamatan | fiturDict | |||
langkah/pengamatan/com_velocity | Tensor | (3,) | float32 | |
langkah/observasi/ekstremitas | Tensor | (12,) | float32 | |
langkah/pengamatan/head_height | Tensor | (1,) | float32 | |
langkah/pengamatan/joint_angles | Tensor | (21,) | float32 | |
langkah/pengamatan/torso_vertical | Tensor | (3,) | float32 | |
langkah/pengamatan/kecepatan | Tensor | (27,) | float32 | |
langkah/hadiah | Tensor | (1,) | float32 |
- Contoh ( tfds.as_dataframe ):
rlu_rwrl/humanoid_walk_combined_challenge_none_40_percent
Ukuran dataset :
2.71 GiB
Di-cache otomatis ( dokumentasi ): Tidak
Perpecahan :
Membelah | Contoh |
---|---|
'train' | 8.000 |
- Struktur fitur :
FeaturesDict({
'episode_return': float32,
'steps': Dataset({
'action': Tensor(shape=(21,), dtype=float32),
'discount': Tensor(shape=(1,), dtype=float32),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': FeaturesDict({
'com_velocity': Tensor(shape=(3,), dtype=float32),
'extremities': Tensor(shape=(12,), dtype=float32),
'head_height': Tensor(shape=(1,), dtype=float32),
'joint_angles': Tensor(shape=(21,), dtype=float32),
'torso_vertical': Tensor(shape=(3,), dtype=float32),
'velocity': Tensor(shape=(27,), dtype=float32),
}),
'reward': Tensor(shape=(1,), dtype=float32),
}),
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Dtype | Keterangan |
---|---|---|---|---|
fiturDict | ||||
episode_return | Tensor | float32 | ||
Langkah | Himpunan data | |||
langkah/tindakan | Tensor | (21,) | float32 | |
langkah/diskon | Tensor | (1,) | float32 | |
langkah/adalah_pertama | Tensor | bool | ||
langkah/is_last | Tensor | bool | ||
langkah/is_terminal | Tensor | bool | ||
langkah/pengamatan | fiturDict | |||
langkah/pengamatan/com_velocity | Tensor | (3,) | float32 | |
langkah/observasi/ekstremitas | Tensor | (12,) | float32 | |
langkah/pengamatan/head_height | Tensor | (1,) | float32 | |
langkah/pengamatan/joint_angles | Tensor | (21,) | float32 | |
langkah/pengamatan/torso_vertical | Tensor | (3,) | float32 | |
langkah/pengamatan/kecepatan | Tensor | (27,) | float32 | |
langkah/hadiah | Tensor | (1,) | float32 |
- Contoh ( tfds.as_dataframe ):
rlu_rwrl/humanoid_walk_combined_challenge_none_100_percent
Ukuran dataset :
6.78 GiB
Di-cache otomatis ( dokumentasi ): Tidak
Perpecahan :
Membelah | Contoh |
---|---|
'train' | 20.000 |
- Struktur fitur :
FeaturesDict({
'episode_return': float32,
'steps': Dataset({
'action': Tensor(shape=(21,), dtype=float32),
'discount': Tensor(shape=(1,), dtype=float32),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': FeaturesDict({
'com_velocity': Tensor(shape=(3,), dtype=float32),
'extremities': Tensor(shape=(12,), dtype=float32),
'head_height': Tensor(shape=(1,), dtype=float32),
'joint_angles': Tensor(shape=(21,), dtype=float32),
'torso_vertical': Tensor(shape=(3,), dtype=float32),
'velocity': Tensor(shape=(27,), dtype=float32),
}),
'reward': Tensor(shape=(1,), dtype=float32),
}),
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Dtype | Keterangan |
---|---|---|---|---|
fiturDict | ||||
episode_return | Tensor | float32 | ||
Langkah | Himpunan data | |||
langkah/tindakan | Tensor | (21,) | float32 | |
langkah/diskon | Tensor | (1,) | float32 | |
langkah/adalah_pertama | Tensor | bool | ||
langkah/is_last | Tensor | bool | ||
langkah/is_terminal | Tensor | bool | ||
langkah/pengamatan | fiturDict | |||
langkah/pengamatan/com_velocity | Tensor | (3,) | float32 | |
langkah/observasi/ekstremitas | Tensor | (12,) | float32 | |
langkah/pengamatan/head_height | Tensor | (1,) | float32 | |
langkah/pengamatan/joint_angles | Tensor | (21,) | float32 | |
langkah/pengamatan/torso_vertical | Tensor | (3,) | float32 | |
langkah/pengamatan/kecepatan | Tensor | (27,) | float32 | |
langkah/hadiah | Tensor | (1,) | float32 |
- Contoh ( tfds.as_dataframe ):
rlu_rwrl/cartpole_swingup_combined_challenge_easy_1_percent
Ukuran dataset :
369.84 KiB
Di-cache otomatis ( dokumentasi ): Ya
Perpecahan :
Membelah | Contoh |
---|---|
'train' | 5 |
- Struktur fitur :
FeaturesDict({
'episode_return': float32,
'steps': Dataset({
'action': Tensor(shape=(1,), dtype=float32),
'discount': Tensor(shape=(1,), dtype=float32),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': FeaturesDict({
'dummy-0': Tensor(shape=(1,), dtype=float32),
'dummy-1': Tensor(shape=(1,), dtype=float32),
'dummy-2': Tensor(shape=(1,), dtype=float32),
'dummy-3': Tensor(shape=(1,), dtype=float32),
'dummy-4': Tensor(shape=(1,), dtype=float32),
'dummy-5': Tensor(shape=(1,), dtype=float32),
'dummy-6': Tensor(shape=(1,), dtype=float32),
'dummy-7': Tensor(shape=(1,), dtype=float32),
'dummy-8': Tensor(shape=(1,), dtype=float32),
'dummy-9': Tensor(shape=(1,), dtype=float32),
'position': Tensor(shape=(3,), dtype=float32),
'velocity': Tensor(shape=(2,), dtype=float32),
}),
'reward': Tensor(shape=(1,), dtype=float32),
}),
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Dtype | Keterangan |
---|---|---|---|---|
fiturDict | ||||
episode_return | Tensor | float32 | ||
Langkah | Himpunan data | |||
langkah/tindakan | Tensor | (1,) | float32 | |
langkah/diskon | Tensor | (1,) | float32 | |
langkah/adalah_pertama | Tensor | bool | ||
langkah/is_last | Tensor | bool | ||
langkah/is_terminal | Tensor | bool | ||
langkah/pengamatan | fiturDict | |||
langkah/pengamatan/dummy-0 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-1 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-2 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-3 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-4 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-5 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-6 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-7 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-8 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-9 | Tensor | (1,) | float32 | |
langkah/pengamatan/posisi | Tensor | (3,) | float32 | |
langkah/pengamatan/kecepatan | Tensor | (2,) | float32 | |
langkah/hadiah | Tensor | (1,) | float32 |
- Contoh ( tfds.as_dataframe ):
rlu_rwrl/cartpole_swingup_combined_challenge_easy_5_percent
Ukuran dataset :
1.81 MiB
Di-cache otomatis ( dokumentasi ): Ya
Perpecahan :
Membelah | Contoh |
---|---|
'train' | 25 |
- Struktur fitur :
FeaturesDict({
'episode_return': float32,
'steps': Dataset({
'action': Tensor(shape=(1,), dtype=float32),
'discount': Tensor(shape=(1,), dtype=float32),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': FeaturesDict({
'dummy-0': Tensor(shape=(1,), dtype=float32),
'dummy-1': Tensor(shape=(1,), dtype=float32),
'dummy-2': Tensor(shape=(1,), dtype=float32),
'dummy-3': Tensor(shape=(1,), dtype=float32),
'dummy-4': Tensor(shape=(1,), dtype=float32),
'dummy-5': Tensor(shape=(1,), dtype=float32),
'dummy-6': Tensor(shape=(1,), dtype=float32),
'dummy-7': Tensor(shape=(1,), dtype=float32),
'dummy-8': Tensor(shape=(1,), dtype=float32),
'dummy-9': Tensor(shape=(1,), dtype=float32),
'position': Tensor(shape=(3,), dtype=float32),
'velocity': Tensor(shape=(2,), dtype=float32),
}),
'reward': Tensor(shape=(1,), dtype=float32),
}),
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Dtype | Keterangan |
---|---|---|---|---|
fiturDict | ||||
episode_return | Tensor | float32 | ||
Langkah | Himpunan data | |||
langkah/tindakan | Tensor | (1,) | float32 | |
langkah/diskon | Tensor | (1,) | float32 | |
langkah/adalah_pertama | Tensor | bool | ||
langkah/is_last | Tensor | bool | ||
langkah/is_terminal | Tensor | bool | ||
langkah/pengamatan | fiturDict | |||
langkah/pengamatan/dummy-0 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-1 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-2 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-3 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-4 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-5 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-6 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-7 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-8 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-9 | Tensor | (1,) | float32 | |
langkah/pengamatan/posisi | Tensor | (3,) | float32 | |
langkah/pengamatan/kecepatan | Tensor | (2,) | float32 | |
langkah/hadiah | Tensor | (1,) | float32 |
- Contoh ( tfds.as_dataframe ):
rlu_rwrl/cartpole_swingup_combined_challenge_easy_20_percent
Ukuran dataset :
7.22 MiB
Di-cache otomatis ( dokumentasi ): Ya
Perpecahan :
Membelah | Contoh |
---|---|
'train' | 100 |
- Struktur fitur :
FeaturesDict({
'episode_return': float32,
'steps': Dataset({
'action': Tensor(shape=(1,), dtype=float32),
'discount': Tensor(shape=(1,), dtype=float32),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': FeaturesDict({
'dummy-0': Tensor(shape=(1,), dtype=float32),
'dummy-1': Tensor(shape=(1,), dtype=float32),
'dummy-2': Tensor(shape=(1,), dtype=float32),
'dummy-3': Tensor(shape=(1,), dtype=float32),
'dummy-4': Tensor(shape=(1,), dtype=float32),
'dummy-5': Tensor(shape=(1,), dtype=float32),
'dummy-6': Tensor(shape=(1,), dtype=float32),
'dummy-7': Tensor(shape=(1,), dtype=float32),
'dummy-8': Tensor(shape=(1,), dtype=float32),
'dummy-9': Tensor(shape=(1,), dtype=float32),
'position': Tensor(shape=(3,), dtype=float32),
'velocity': Tensor(shape=(2,), dtype=float32),
}),
'reward': Tensor(shape=(1,), dtype=float32),
}),
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Dtype | Keterangan |
---|---|---|---|---|
fiturDict | ||||
episode_return | Tensor | float32 | ||
Langkah | Himpunan data | |||
langkah/tindakan | Tensor | (1,) | float32 | |
langkah/diskon | Tensor | (1,) | float32 | |
langkah/adalah_pertama | Tensor | bool | ||
langkah/is_last | Tensor | bool | ||
langkah/is_terminal | Tensor | bool | ||
langkah/pengamatan | fiturDict | |||
langkah/pengamatan/dummy-0 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-1 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-2 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-3 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-4 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-5 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-6 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-7 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-8 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-9 | Tensor | (1,) | float32 | |
langkah/pengamatan/posisi | Tensor | (3,) | float32 | |
langkah/pengamatan/kecepatan | Tensor | (2,) | float32 | |
langkah/hadiah | Tensor | (1,) | float32 |
- Contoh ( tfds.as_dataframe ):
rlu_rwrl/cartpole_swingup_combined_challenge_easy_40_percent
Ukuran dataset :
14.45 MiB
Di-cache otomatis ( dokumentasi ): Ya
Perpecahan :
Membelah | Contoh |
---|---|
'train' | 200 |
- Struktur fitur :
FeaturesDict({
'episode_return': float32,
'steps': Dataset({
'action': Tensor(shape=(1,), dtype=float32),
'discount': Tensor(shape=(1,), dtype=float32),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': FeaturesDict({
'dummy-0': Tensor(shape=(1,), dtype=float32),
'dummy-1': Tensor(shape=(1,), dtype=float32),
'dummy-2': Tensor(shape=(1,), dtype=float32),
'dummy-3': Tensor(shape=(1,), dtype=float32),
'dummy-4': Tensor(shape=(1,), dtype=float32),
'dummy-5': Tensor(shape=(1,), dtype=float32),
'dummy-6': Tensor(shape=(1,), dtype=float32),
'dummy-7': Tensor(shape=(1,), dtype=float32),
'dummy-8': Tensor(shape=(1,), dtype=float32),
'dummy-9': Tensor(shape=(1,), dtype=float32),
'position': Tensor(shape=(3,), dtype=float32),
'velocity': Tensor(shape=(2,), dtype=float32),
}),
'reward': Tensor(shape=(1,), dtype=float32),
}),
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Dtype | Keterangan |
---|---|---|---|---|
fiturDict | ||||
episode_return | Tensor | float32 | ||
Langkah | Himpunan data | |||
langkah/tindakan | Tensor | (1,) | float32 | |
langkah/diskon | Tensor | (1,) | float32 | |
langkah/adalah_pertama | Tensor | bool | ||
langkah/is_last | Tensor | bool | ||
langkah/is_terminal | Tensor | bool | ||
langkah/pengamatan | fiturDict | |||
langkah/pengamatan/dummy-0 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-1 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-2 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-3 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-4 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-5 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-6 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-7 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-8 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-9 | Tensor | (1,) | float32 | |
langkah/pengamatan/posisi | Tensor | (3,) | float32 | |
langkah/pengamatan/kecepatan | Tensor | (2,) | float32 | |
langkah/hadiah | Tensor | (1,) | float32 |
- Contoh ( tfds.as_dataframe ):
rlu_rwrl/cartpole_swingup_combined_challenge_easy_100_percent
Ukuran dataset :
36.12 MiB
Di-cache otomatis ( dokumentasi ): Ya
Perpecahan :
Membelah | Contoh |
---|---|
'train' | 500 |
- Struktur fitur :
FeaturesDict({
'episode_return': float32,
'steps': Dataset({
'action': Tensor(shape=(1,), dtype=float32),
'discount': Tensor(shape=(1,), dtype=float32),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': FeaturesDict({
'dummy-0': Tensor(shape=(1,), dtype=float32),
'dummy-1': Tensor(shape=(1,), dtype=float32),
'dummy-2': Tensor(shape=(1,), dtype=float32),
'dummy-3': Tensor(shape=(1,), dtype=float32),
'dummy-4': Tensor(shape=(1,), dtype=float32),
'dummy-5': Tensor(shape=(1,), dtype=float32),
'dummy-6': Tensor(shape=(1,), dtype=float32),
'dummy-7': Tensor(shape=(1,), dtype=float32),
'dummy-8': Tensor(shape=(1,), dtype=float32),
'dummy-9': Tensor(shape=(1,), dtype=float32),
'position': Tensor(shape=(3,), dtype=float32),
'velocity': Tensor(shape=(2,), dtype=float32),
}),
'reward': Tensor(shape=(1,), dtype=float32),
}),
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Dtype | Keterangan |
---|---|---|---|---|
fiturDict | ||||
episode_return | Tensor | float32 | ||
Langkah | Himpunan data | |||
langkah/tindakan | Tensor | (1,) | float32 | |
langkah/diskon | Tensor | (1,) | float32 | |
langkah/adalah_pertama | Tensor | bool | ||
langkah/is_last | Tensor | bool | ||
langkah/is_terminal | Tensor | bool | ||
langkah/pengamatan | fiturDict | |||
langkah/pengamatan/dummy-0 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-1 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-2 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-3 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-4 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-5 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-6 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-7 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-8 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-9 | Tensor | (1,) | float32 | |
langkah/pengamatan/posisi | Tensor | (3,) | float32 | |
langkah/pengamatan/kecepatan | Tensor | (2,) | float32 | |
langkah/hadiah | Tensor | (1,) | float32 |
- Contoh ( tfds.as_dataframe ):
rlu_rwrl/quadruped_walk_combined_challenge_easy_1_percent
Ukuran dataset :
1.97 MiB
Di-cache otomatis ( dokumentasi ): Ya
Perpecahan :
Membelah | Contoh |
---|---|
'train' | 5 |
- Struktur fitur :
FeaturesDict({
'episode_return': float32,
'steps': Dataset({
'action': Tensor(shape=(12,), dtype=float32),
'discount': Tensor(shape=(1,), dtype=float32),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': FeaturesDict({
'dummy-0': Tensor(shape=(1,), dtype=float32),
'dummy-1': Tensor(shape=(1,), dtype=float32),
'dummy-2': Tensor(shape=(1,), dtype=float32),
'dummy-3': Tensor(shape=(1,), dtype=float32),
'dummy-4': Tensor(shape=(1,), dtype=float32),
'dummy-5': Tensor(shape=(1,), dtype=float32),
'dummy-6': Tensor(shape=(1,), dtype=float32),
'dummy-7': Tensor(shape=(1,), dtype=float32),
'dummy-8': Tensor(shape=(1,), dtype=float32),
'dummy-9': Tensor(shape=(1,), dtype=float32),
'egocentric_state': Tensor(shape=(44,), dtype=float32),
'force_torque': Tensor(shape=(24,), dtype=float32),
'imu': Tensor(shape=(6,), dtype=float32),
'torso_upright': Tensor(shape=(1,), dtype=float32),
'torso_velocity': Tensor(shape=(3,), dtype=float32),
}),
'reward': Tensor(shape=(1,), dtype=float32),
}),
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Dtype | Keterangan |
---|---|---|---|---|
fiturDict | ||||
episode_return | Tensor | float32 | ||
Langkah | Himpunan data | |||
langkah/tindakan | Tensor | (12,) | float32 | |
langkah/diskon | Tensor | (1,) | float32 | |
langkah/adalah_pertama | Tensor | bool | ||
langkah/is_last | Tensor | bool | ||
langkah/is_terminal | Tensor | bool | ||
langkah/pengamatan | fiturDict | |||
langkah/pengamatan/dummy-0 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-1 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-2 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-3 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-4 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-5 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-6 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-7 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-8 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-9 | Tensor | (1,) | float32 | |
langkah/pengamatan/status_egosentris | Tensor | (44,) | float32 | |
langkah/pengamatan/force_torque | Tensor | (24,) | float32 | |
langkah/pengamatan/imu | Tensor | (6,) | float32 | |
langkah/pengamatan/torso_upright | Tensor | (1,) | float32 | |
langkah/pengamatan/kecepatan_torso | Tensor | (3,) | float32 | |
langkah/hadiah | Tensor | (1,) | float32 |
- Contoh ( tfds.as_dataframe ):
rlu_rwrl/quadruped_walk_combined_challenge_easy_5_percent
Ukuran dataset :
9.83 MiB
Di-cache otomatis ( dokumentasi ): Ya
Perpecahan :
Membelah | Contoh |
---|---|
'train' | 25 |
- Struktur fitur :
FeaturesDict({
'episode_return': float32,
'steps': Dataset({
'action': Tensor(shape=(12,), dtype=float32),
'discount': Tensor(shape=(1,), dtype=float32),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': FeaturesDict({
'dummy-0': Tensor(shape=(1,), dtype=float32),
'dummy-1': Tensor(shape=(1,), dtype=float32),
'dummy-2': Tensor(shape=(1,), dtype=float32),
'dummy-3': Tensor(shape=(1,), dtype=float32),
'dummy-4': Tensor(shape=(1,), dtype=float32),
'dummy-5': Tensor(shape=(1,), dtype=float32),
'dummy-6': Tensor(shape=(1,), dtype=float32),
'dummy-7': Tensor(shape=(1,), dtype=float32),
'dummy-8': Tensor(shape=(1,), dtype=float32),
'dummy-9': Tensor(shape=(1,), dtype=float32),
'egocentric_state': Tensor(shape=(44,), dtype=float32),
'force_torque': Tensor(shape=(24,), dtype=float32),
'imu': Tensor(shape=(6,), dtype=float32),
'torso_upright': Tensor(shape=(1,), dtype=float32),
'torso_velocity': Tensor(shape=(3,), dtype=float32),
}),
'reward': Tensor(shape=(1,), dtype=float32),
}),
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Dtype | Keterangan |
---|---|---|---|---|
fiturDict | ||||
episode_return | Tensor | float32 | ||
Langkah | Himpunan data | |||
langkah/tindakan | Tensor | (12,) | float32 | |
langkah/diskon | Tensor | (1,) | float32 | |
langkah/adalah_pertama | Tensor | bool | ||
langkah/is_last | Tensor | bool | ||
langkah/is_terminal | Tensor | bool | ||
langkah/pengamatan | fiturDict | |||
langkah/pengamatan/dummy-0 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-1 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-2 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-3 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-4 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-5 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-6 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-7 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-8 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-9 | Tensor | (1,) | float32 | |
langkah/pengamatan/status_egosentris | Tensor | (44,) | float32 | |
langkah/pengamatan/force_torque | Tensor | (24,) | float32 | |
langkah/pengamatan/imu | Tensor | (6,) | float32 | |
langkah/pengamatan/torso_upright | Tensor | (1,) | float32 | |
langkah/pengamatan/kecepatan_torso | Tensor | (3,) | float32 | |
langkah/hadiah | Tensor | (1,) | float32 |
- Contoh ( tfds.as_dataframe ):
rlu_rwrl/quadruped_walk_combined_challenge_easy_20_percent
Ukuran dataset :
39.31 MiB
Di-cache otomatis ( dokumentasi ): Ya
Perpecahan :
Membelah | Contoh |
---|---|
'train' | 100 |
- Struktur fitur :
FeaturesDict({
'episode_return': float32,
'steps': Dataset({
'action': Tensor(shape=(12,), dtype=float32),
'discount': Tensor(shape=(1,), dtype=float32),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': FeaturesDict({
'dummy-0': Tensor(shape=(1,), dtype=float32),
'dummy-1': Tensor(shape=(1,), dtype=float32),
'dummy-2': Tensor(shape=(1,), dtype=float32),
'dummy-3': Tensor(shape=(1,), dtype=float32),
'dummy-4': Tensor(shape=(1,), dtype=float32),
'dummy-5': Tensor(shape=(1,), dtype=float32),
'dummy-6': Tensor(shape=(1,), dtype=float32),
'dummy-7': Tensor(shape=(1,), dtype=float32),
'dummy-8': Tensor(shape=(1,), dtype=float32),
'dummy-9': Tensor(shape=(1,), dtype=float32),
'egocentric_state': Tensor(shape=(44,), dtype=float32),
'force_torque': Tensor(shape=(24,), dtype=float32),
'imu': Tensor(shape=(6,), dtype=float32),
'torso_upright': Tensor(shape=(1,), dtype=float32),
'torso_velocity': Tensor(shape=(3,), dtype=float32),
}),
'reward': Tensor(shape=(1,), dtype=float32),
}),
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Dtype | Keterangan |
---|---|---|---|---|
fiturDict | ||||
episode_return | Tensor | float32 | ||
Langkah | Himpunan data | |||
langkah/tindakan | Tensor | (12,) | float32 | |
langkah/diskon | Tensor | (1,) | float32 | |
langkah/adalah_pertama | Tensor | bool | ||
langkah/is_last | Tensor | bool | ||
langkah/is_terminal | Tensor | bool | ||
langkah/pengamatan | fiturDict | |||
langkah/pengamatan/dummy-0 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-1 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-2 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-3 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-4 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-5 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-6 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-7 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-8 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-9 | Tensor | (1,) | float32 | |
langkah/pengamatan/status_egosentris | Tensor | (44,) | float32 | |
langkah/pengamatan/force_torque | Tensor | (24,) | float32 | |
langkah/pengamatan/imu | Tensor | (6,) | float32 | |
langkah/pengamatan/torso_upright | Tensor | (1,) | float32 | |
langkah/pengamatan/kecepatan_torso | Tensor | (3,) | float32 | |
langkah/hadiah | Tensor | (1,) | float32 |
- Contoh ( tfds.as_dataframe ):
rlu_rwrl/quadruped_walk_combined_challenge_easy_40_percent
Ukuran dataset :
78.63 MiB
Di-cache otomatis ( dokumentasi ): Ya
Perpecahan :
Membelah | Contoh |
---|---|
'train' | 200 |
- Struktur fitur :
FeaturesDict({
'episode_return': float32,
'steps': Dataset({
'action': Tensor(shape=(12,), dtype=float32),
'discount': Tensor(shape=(1,), dtype=float32),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': FeaturesDict({
'dummy-0': Tensor(shape=(1,), dtype=float32),
'dummy-1': Tensor(shape=(1,), dtype=float32),
'dummy-2': Tensor(shape=(1,), dtype=float32),
'dummy-3': Tensor(shape=(1,), dtype=float32),
'dummy-4': Tensor(shape=(1,), dtype=float32),
'dummy-5': Tensor(shape=(1,), dtype=float32),
'dummy-6': Tensor(shape=(1,), dtype=float32),
'dummy-7': Tensor(shape=(1,), dtype=float32),
'dummy-8': Tensor(shape=(1,), dtype=float32),
'dummy-9': Tensor(shape=(1,), dtype=float32),
'egocentric_state': Tensor(shape=(44,), dtype=float32),
'force_torque': Tensor(shape=(24,), dtype=float32),
'imu': Tensor(shape=(6,), dtype=float32),
'torso_upright': Tensor(shape=(1,), dtype=float32),
'torso_velocity': Tensor(shape=(3,), dtype=float32),
}),
'reward': Tensor(shape=(1,), dtype=float32),
}),
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Dtype | Keterangan |
---|---|---|---|---|
fiturDict | ||||
episode_return | Tensor | float32 | ||
Langkah | Himpunan data | |||
langkah/tindakan | Tensor | (12,) | float32 | |
langkah/diskon | Tensor | (1,) | float32 | |
langkah/adalah_pertama | Tensor | bool | ||
langkah/is_last | Tensor | bool | ||
langkah/is_terminal | Tensor | bool | ||
langkah/pengamatan | fiturDict | |||
langkah/pengamatan/dummy-0 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-1 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-2 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-3 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-4 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-5 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-6 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-7 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-8 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-9 | Tensor | (1,) | float32 | |
langkah/pengamatan/status_egosentris | Tensor | (44,) | float32 | |
langkah/pengamatan/force_torque | Tensor | (24,) | float32 | |
langkah/pengamatan/imu | Tensor | (6,) | float32 | |
langkah/pengamatan/torso_upright | Tensor | (1,) | float32 | |
langkah/pengamatan/kecepatan_torso | Tensor | (3,) | float32 | |
langkah/hadiah | Tensor | (1,) | float32 |
- Contoh ( tfds.as_dataframe ):
rlu_rwrl/quadruped_walk_combined_challenge_easy_100_percent
Ukuran dataset :
196.57 MiB
Auto-cached ( dokumentasi ): Hanya ketika
shuffle_files=False
(train)Perpecahan :
Membelah | Contoh |
---|---|
'train' | 500 |
- Struktur fitur :
FeaturesDict({
'episode_return': float32,
'steps': Dataset({
'action': Tensor(shape=(12,), dtype=float32),
'discount': Tensor(shape=(1,), dtype=float32),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': FeaturesDict({
'dummy-0': Tensor(shape=(1,), dtype=float32),
'dummy-1': Tensor(shape=(1,), dtype=float32),
'dummy-2': Tensor(shape=(1,), dtype=float32),
'dummy-3': Tensor(shape=(1,), dtype=float32),
'dummy-4': Tensor(shape=(1,), dtype=float32),
'dummy-5': Tensor(shape=(1,), dtype=float32),
'dummy-6': Tensor(shape=(1,), dtype=float32),
'dummy-7': Tensor(shape=(1,), dtype=float32),
'dummy-8': Tensor(shape=(1,), dtype=float32),
'dummy-9': Tensor(shape=(1,), dtype=float32),
'egocentric_state': Tensor(shape=(44,), dtype=float32),
'force_torque': Tensor(shape=(24,), dtype=float32),
'imu': Tensor(shape=(6,), dtype=float32),
'torso_upright': Tensor(shape=(1,), dtype=float32),
'torso_velocity': Tensor(shape=(3,), dtype=float32),
}),
'reward': Tensor(shape=(1,), dtype=float32),
}),
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Dtype | Keterangan |
---|---|---|---|---|
fiturDict | ||||
episode_return | Tensor | float32 | ||
Langkah | Himpunan data | |||
langkah/tindakan | Tensor | (12,) | float32 | |
langkah/diskon | Tensor | (1,) | float32 | |
langkah/adalah_pertama | Tensor | bool | ||
langkah/is_last | Tensor | bool | ||
langkah/is_terminal | Tensor | bool | ||
langkah/pengamatan | fiturDict | |||
langkah/pengamatan/dummy-0 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-1 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-2 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-3 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-4 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-5 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-6 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-7 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-8 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-9 | Tensor | (1,) | float32 | |
langkah/pengamatan/status_egosentris | Tensor | (44,) | float32 | |
langkah/pengamatan/force_torque | Tensor | (24,) | float32 | |
langkah/pengamatan/imu | Tensor | (6,) | float32 | |
langkah/pengamatan/torso_upright | Tensor | (1,) | float32 | |
langkah/pengamatan/kecepatan_torso | Tensor | (3,) | float32 | |
langkah/hadiah | Tensor | (1,) | float32 |
- Contoh ( tfds.as_dataframe ):
rlu_rwrl/walker_walk_combined_challenge_easy_1_percent
Ukuran dataset :
8.20 MiB
Di-cache otomatis ( dokumentasi ): Ya
Perpecahan :
Membelah | Contoh |
---|---|
'train' | 50 |
- Struktur fitur :
FeaturesDict({
'episode_return': float32,
'steps': Dataset({
'action': Tensor(shape=(6,), dtype=float32),
'discount': Tensor(shape=(1,), dtype=float32),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': FeaturesDict({
'dummy-0': Tensor(shape=(1,), dtype=float32),
'dummy-1': Tensor(shape=(1,), dtype=float32),
'dummy-2': Tensor(shape=(1,), dtype=float32),
'dummy-3': Tensor(shape=(1,), dtype=float32),
'dummy-4': Tensor(shape=(1,), dtype=float32),
'dummy-5': Tensor(shape=(1,), dtype=float32),
'dummy-6': Tensor(shape=(1,), dtype=float32),
'dummy-7': Tensor(shape=(1,), dtype=float32),
'dummy-8': Tensor(shape=(1,), dtype=float32),
'dummy-9': Tensor(shape=(1,), dtype=float32),
'height': Tensor(shape=(1,), dtype=float32),
'orientations': Tensor(shape=(14,), dtype=float32),
'velocity': Tensor(shape=(9,), dtype=float32),
}),
'reward': Tensor(shape=(1,), dtype=float32),
}),
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Dtype | Keterangan |
---|---|---|---|---|
fiturDict | ||||
episode_return | Tensor | float32 | ||
Langkah | Himpunan data | |||
langkah/tindakan | Tensor | (6,) | float32 | |
langkah/diskon | Tensor | (1,) | float32 | |
langkah/adalah_pertama | Tensor | bool | ||
langkah/is_last | Tensor | bool | ||
langkah/is_terminal | Tensor | bool | ||
langkah/pengamatan | fiturDict | |||
langkah/pengamatan/dummy-0 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-1 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-2 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-3 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-4 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-5 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-6 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-7 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-8 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-9 | Tensor | (1,) | float32 | |
langkah/observasi/tinggi | Tensor | (1,) | float32 | |
langkah/pengamatan/orientasi | Tensor | (14,) | float32 | |
langkah/pengamatan/kecepatan | Tensor | (9,) | float32 | |
langkah/hadiah | Tensor | (1,) | float32 |
- Contoh ( tfds.as_dataframe ):
rlu_rwrl/walker_walk_combined_challenge_easy_5_percent
Ukuran dataset :
40.98 MiB
Di-cache otomatis ( dokumentasi ): Ya
Perpecahan :
Membelah | Contoh |
---|---|
'train' | 250 |
- Struktur fitur :
FeaturesDict({
'episode_return': float32,
'steps': Dataset({
'action': Tensor(shape=(6,), dtype=float32),
'discount': Tensor(shape=(1,), dtype=float32),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': FeaturesDict({
'dummy-0': Tensor(shape=(1,), dtype=float32),
'dummy-1': Tensor(shape=(1,), dtype=float32),
'dummy-2': Tensor(shape=(1,), dtype=float32),
'dummy-3': Tensor(shape=(1,), dtype=float32),
'dummy-4': Tensor(shape=(1,), dtype=float32),
'dummy-5': Tensor(shape=(1,), dtype=float32),
'dummy-6': Tensor(shape=(1,), dtype=float32),
'dummy-7': Tensor(shape=(1,), dtype=float32),
'dummy-8': Tensor(shape=(1,), dtype=float32),
'dummy-9': Tensor(shape=(1,), dtype=float32),
'height': Tensor(shape=(1,), dtype=float32),
'orientations': Tensor(shape=(14,), dtype=float32),
'velocity': Tensor(shape=(9,), dtype=float32),
}),
'reward': Tensor(shape=(1,), dtype=float32),
}),
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Dtype | Keterangan |
---|---|---|---|---|
fiturDict | ||||
episode_return | Tensor | float32 | ||
Langkah | Himpunan data | |||
langkah/tindakan | Tensor | (6,) | float32 | |
langkah/diskon | Tensor | (1,) | float32 | |
langkah/adalah_pertama | Tensor | bool | ||
langkah/is_last | Tensor | bool | ||
langkah/is_terminal | Tensor | bool | ||
langkah/pengamatan | fiturDict | |||
langkah/pengamatan/dummy-0 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-1 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-2 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-3 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-4 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-5 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-6 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-7 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-8 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-9 | Tensor | (1,) | float32 | |
langkah/observasi/tinggi | Tensor | (1,) | float32 | |
langkah/pengamatan/orientasi | Tensor | (14,) | float32 | |
langkah/pengamatan/kecepatan | Tensor | (9,) | float32 | |
langkah/hadiah | Tensor | (1,) | float32 |
- Contoh ( tfds.as_dataframe ):
rlu_rwrl/walker_walk_combined_challenge_easy_20_percent
Ukuran dataset :
163.93 MiB
Auto-cached ( dokumentasi ): Hanya ketika
shuffle_files=False
(train)Perpecahan :
Membelah | Contoh |
---|---|
'train' | 1.000 |
- Struktur fitur :
FeaturesDict({
'episode_return': float32,
'steps': Dataset({
'action': Tensor(shape=(6,), dtype=float32),
'discount': Tensor(shape=(1,), dtype=float32),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': FeaturesDict({
'dummy-0': Tensor(shape=(1,), dtype=float32),
'dummy-1': Tensor(shape=(1,), dtype=float32),
'dummy-2': Tensor(shape=(1,), dtype=float32),
'dummy-3': Tensor(shape=(1,), dtype=float32),
'dummy-4': Tensor(shape=(1,), dtype=float32),
'dummy-5': Tensor(shape=(1,), dtype=float32),
'dummy-6': Tensor(shape=(1,), dtype=float32),
'dummy-7': Tensor(shape=(1,), dtype=float32),
'dummy-8': Tensor(shape=(1,), dtype=float32),
'dummy-9': Tensor(shape=(1,), dtype=float32),
'height': Tensor(shape=(1,), dtype=float32),
'orientations': Tensor(shape=(14,), dtype=float32),
'velocity': Tensor(shape=(9,), dtype=float32),
}),
'reward': Tensor(shape=(1,), dtype=float32),
}),
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Dtype | Keterangan |
---|---|---|---|---|
fiturDict | ||||
episode_return | Tensor | float32 | ||
Langkah | Himpunan data | |||
langkah/tindakan | Tensor | (6,) | float32 | |
langkah/diskon | Tensor | (1,) | float32 | |
langkah/adalah_pertama | Tensor | bool | ||
langkah/is_last | Tensor | bool | ||
langkah/is_terminal | Tensor | bool | ||
langkah/pengamatan | fiturDict | |||
langkah/pengamatan/dummy-0 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-1 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-2 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-3 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-4 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-5 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-6 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-7 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-8 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-9 | Tensor | (1,) | float32 | |
langkah/observasi/tinggi | Tensor | (1,) | float32 | |
langkah/pengamatan/orientasi | Tensor | (14,) | float32 | |
langkah/pengamatan/kecepatan | Tensor | (9,) | float32 | |
langkah/hadiah | Tensor | (1,) | float32 |
- Contoh ( tfds.as_dataframe ):
rlu_rwrl/walker_walk_combined_challenge_easy_40_percent
Ukuran dataset :
327.86 MiB
Di-cache otomatis ( dokumentasi ): Tidak
Perpecahan :
Membelah | Contoh |
---|---|
'train' | 2.000 |
- Struktur fitur :
FeaturesDict({
'episode_return': float32,
'steps': Dataset({
'action': Tensor(shape=(6,), dtype=float32),
'discount': Tensor(shape=(1,), dtype=float32),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': FeaturesDict({
'dummy-0': Tensor(shape=(1,), dtype=float32),
'dummy-1': Tensor(shape=(1,), dtype=float32),
'dummy-2': Tensor(shape=(1,), dtype=float32),
'dummy-3': Tensor(shape=(1,), dtype=float32),
'dummy-4': Tensor(shape=(1,), dtype=float32),
'dummy-5': Tensor(shape=(1,), dtype=float32),
'dummy-6': Tensor(shape=(1,), dtype=float32),
'dummy-7': Tensor(shape=(1,), dtype=float32),
'dummy-8': Tensor(shape=(1,), dtype=float32),
'dummy-9': Tensor(shape=(1,), dtype=float32),
'height': Tensor(shape=(1,), dtype=float32),
'orientations': Tensor(shape=(14,), dtype=float32),
'velocity': Tensor(shape=(9,), dtype=float32),
}),
'reward': Tensor(shape=(1,), dtype=float32),
}),
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Dtype | Keterangan |
---|---|---|---|---|
fiturDict | ||||
episode_return | Tensor | float32 | ||
Langkah | Himpunan data | |||
langkah/tindakan | Tensor | (6,) | float32 | |
langkah/diskon | Tensor | (1,) | float32 | |
langkah/adalah_pertama | Tensor | bool | ||
langkah/is_last | Tensor | bool | ||
langkah/is_terminal | Tensor | bool | ||
langkah/pengamatan | fiturDict | |||
langkah/pengamatan/dummy-0 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-1 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-2 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-3 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-4 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-5 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-6 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-7 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-8 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-9 | Tensor | (1,) | float32 | |
langkah/observasi/tinggi | Tensor | (1,) | float32 | |
langkah/pengamatan/orientasi | Tensor | (14,) | float32 | |
langkah/pengamatan/kecepatan | Tensor | (9,) | float32 | |
langkah/hadiah | Tensor | (1,) | float32 |
- Contoh ( tfds.as_dataframe ):
rlu_rwrl/walker_walk_combined_challenge_easy_100_percent
Ukuran dataset :
819.65 MiB
Di-cache otomatis ( dokumentasi ): Tidak
Perpecahan :
Membelah | Contoh |
---|---|
'train' | 5.000 |
- Struktur fitur :
FeaturesDict({
'episode_return': float32,
'steps': Dataset({
'action': Tensor(shape=(6,), dtype=float32),
'discount': Tensor(shape=(1,), dtype=float32),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': FeaturesDict({
'dummy-0': Tensor(shape=(1,), dtype=float32),
'dummy-1': Tensor(shape=(1,), dtype=float32),
'dummy-2': Tensor(shape=(1,), dtype=float32),
'dummy-3': Tensor(shape=(1,), dtype=float32),
'dummy-4': Tensor(shape=(1,), dtype=float32),
'dummy-5': Tensor(shape=(1,), dtype=float32),
'dummy-6': Tensor(shape=(1,), dtype=float32),
'dummy-7': Tensor(shape=(1,), dtype=float32),
'dummy-8': Tensor(shape=(1,), dtype=float32),
'dummy-9': Tensor(shape=(1,), dtype=float32),
'height': Tensor(shape=(1,), dtype=float32),
'orientations': Tensor(shape=(14,), dtype=float32),
'velocity': Tensor(shape=(9,), dtype=float32),
}),
'reward': Tensor(shape=(1,), dtype=float32),
}),
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Dtype | Keterangan |
---|---|---|---|---|
fiturDict | ||||
episode_return | Tensor | float32 | ||
Langkah | Himpunan data | |||
langkah/tindakan | Tensor | (6,) | float32 | |
langkah/diskon | Tensor | (1,) | float32 | |
langkah/adalah_pertama | Tensor | bool | ||
langkah/is_last | Tensor | bool | ||
langkah/is_terminal | Tensor | bool | ||
langkah/pengamatan | fiturDict | |||
langkah/pengamatan/dummy-0 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-1 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-2 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-3 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-4 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-5 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-6 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-7 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-8 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-9 | Tensor | (1,) | float32 | |
langkah/observasi/tinggi | Tensor | (1,) | float32 | |
langkah/pengamatan/orientasi | Tensor | (14,) | float32 | |
langkah/pengamatan/kecepatan | Tensor | (9,) | float32 | |
langkah/hadiah | Tensor | (1,) | float32 |
- Contoh ( tfds.as_dataframe ):
rlu_rwrl/humanoid_walk_combined_challenge_easy_1_percent
Ukuran dataset :
77.11 MiB
Di-cache otomatis ( dokumentasi ): Ya
Perpecahan :
Membelah | Contoh |
---|---|
'train' | 200 |
- Struktur fitur :
FeaturesDict({
'episode_return': float32,
'steps': Dataset({
'action': Tensor(shape=(21,), dtype=float32),
'discount': Tensor(shape=(1,), dtype=float32),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': FeaturesDict({
'com_velocity': Tensor(shape=(3,), dtype=float32),
'dummy-0': Tensor(shape=(1,), dtype=float32),
'dummy-1': Tensor(shape=(1,), dtype=float32),
'dummy-2': Tensor(shape=(1,), dtype=float32),
'dummy-3': Tensor(shape=(1,), dtype=float32),
'dummy-4': Tensor(shape=(1,), dtype=float32),
'dummy-5': Tensor(shape=(1,), dtype=float32),
'dummy-6': Tensor(shape=(1,), dtype=float32),
'dummy-7': Tensor(shape=(1,), dtype=float32),
'dummy-8': Tensor(shape=(1,), dtype=float32),
'dummy-9': Tensor(shape=(1,), dtype=float32),
'extremities': Tensor(shape=(12,), dtype=float32),
'head_height': Tensor(shape=(1,), dtype=float32),
'joint_angles': Tensor(shape=(21,), dtype=float32),
'torso_vertical': Tensor(shape=(3,), dtype=float32),
'velocity': Tensor(shape=(27,), dtype=float32),
}),
'reward': Tensor(shape=(1,), dtype=float32),
}),
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Dtype | Keterangan |
---|---|---|---|---|
fiturDict | ||||
episode_return | Tensor | float32 | ||
Langkah | Himpunan data | |||
langkah/tindakan | Tensor | (21,) | float32 | |
langkah/diskon | Tensor | (1,) | float32 | |
langkah/adalah_pertama | Tensor | bool | ||
langkah/is_last | Tensor | bool | ||
langkah/is_terminal | Tensor | bool | ||
langkah/pengamatan | fiturDict | |||
langkah/pengamatan/com_velocity | Tensor | (3,) | float32 | |
langkah/pengamatan/dummy-0 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-1 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-2 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-3 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-4 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-5 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-6 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-7 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-8 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-9 | Tensor | (1,) | float32 | |
langkah/observasi/ekstremitas | Tensor | (12,) | float32 | |
langkah/pengamatan/head_height | Tensor | (1,) | float32 | |
langkah/pengamatan/joint_angles | Tensor | (21,) | float32 | |
langkah/pengamatan/torso_vertical | Tensor | (3,) | float32 | |
langkah/pengamatan/kecepatan | Tensor | (27,) | float32 | |
langkah/hadiah | Tensor | (1,) | float32 |
- Contoh ( tfds.as_dataframe ):
rlu_rwrl/humanoid_walk_combined_challenge_easy_5_percent
Ukuran dataset :
385.54 MiB
Di-cache otomatis ( dokumentasi ): Tidak
Perpecahan :
Membelah | Contoh |
---|---|
'train' | 1.000 |
- Struktur fitur :
FeaturesDict({
'episode_return': float32,
'steps': Dataset({
'action': Tensor(shape=(21,), dtype=float32),
'discount': Tensor(shape=(1,), dtype=float32),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': FeaturesDict({
'com_velocity': Tensor(shape=(3,), dtype=float32),
'dummy-0': Tensor(shape=(1,), dtype=float32),
'dummy-1': Tensor(shape=(1,), dtype=float32),
'dummy-2': Tensor(shape=(1,), dtype=float32),
'dummy-3': Tensor(shape=(1,), dtype=float32),
'dummy-4': Tensor(shape=(1,), dtype=float32),
'dummy-5': Tensor(shape=(1,), dtype=float32),
'dummy-6': Tensor(shape=(1,), dtype=float32),
'dummy-7': Tensor(shape=(1,), dtype=float32),
'dummy-8': Tensor(shape=(1,), dtype=float32),
'dummy-9': Tensor(shape=(1,), dtype=float32),
'extremities': Tensor(shape=(12,), dtype=float32),
'head_height': Tensor(shape=(1,), dtype=float32),
'joint_angles': Tensor(shape=(21,), dtype=float32),
'torso_vertical': Tensor(shape=(3,), dtype=float32),
'velocity': Tensor(shape=(27,), dtype=float32),
}),
'reward': Tensor(shape=(1,), dtype=float32),
}),
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Dtype | Keterangan |
---|---|---|---|---|
fiturDict | ||||
episode_return | Tensor | float32 | ||
Langkah | Himpunan data | |||
langkah/tindakan | Tensor | (21,) | float32 | |
langkah/diskon | Tensor | (1,) | float32 | |
langkah/adalah_pertama | Tensor | bool | ||
langkah/is_last | Tensor | bool | ||
langkah/is_terminal | Tensor | bool | ||
langkah/pengamatan | fiturDict | |||
langkah/pengamatan/com_velocity | Tensor | (3,) | float32 | |
langkah/pengamatan/dummy-0 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-1 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-2 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-3 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-4 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-5 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-6 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-7 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-8 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-9 | Tensor | (1,) | float32 | |
langkah/observasi/ekstremitas | Tensor | (12,) | float32 | |
langkah/pengamatan/head_height | Tensor | (1,) | float32 | |
langkah/pengamatan/joint_angles | Tensor | (21,) | float32 | |
langkah/pengamatan/torso_vertical | Tensor | (3,) | float32 | |
langkah/pengamatan/kecepatan | Tensor | (27,) | float32 | |
langkah/hadiah | Tensor | (1,) | float32 |
- Contoh ( tfds.as_dataframe ):
rlu_rwrl/humanoid_walk_combined_challenge_easy_20_percent
Ukuran dataset :
1.51 GiB
Di-cache otomatis ( dokumentasi ): Tidak
Perpecahan :
Membelah | Contoh |
---|---|
'train' | 4.000 |
- Struktur fitur :
FeaturesDict({
'episode_return': float32,
'steps': Dataset({
'action': Tensor(shape=(21,), dtype=float32),
'discount': Tensor(shape=(1,), dtype=float32),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': FeaturesDict({
'com_velocity': Tensor(shape=(3,), dtype=float32),
'dummy-0': Tensor(shape=(1,), dtype=float32),
'dummy-1': Tensor(shape=(1,), dtype=float32),
'dummy-2': Tensor(shape=(1,), dtype=float32),
'dummy-3': Tensor(shape=(1,), dtype=float32),
'dummy-4': Tensor(shape=(1,), dtype=float32),
'dummy-5': Tensor(shape=(1,), dtype=float32),
'dummy-6': Tensor(shape=(1,), dtype=float32),
'dummy-7': Tensor(shape=(1,), dtype=float32),
'dummy-8': Tensor(shape=(1,), dtype=float32),
'dummy-9': Tensor(shape=(1,), dtype=float32),
'extremities': Tensor(shape=(12,), dtype=float32),
'head_height': Tensor(shape=(1,), dtype=float32),
'joint_angles': Tensor(shape=(21,), dtype=float32),
'torso_vertical': Tensor(shape=(3,), dtype=float32),
'velocity': Tensor(shape=(27,), dtype=float32),
}),
'reward': Tensor(shape=(1,), dtype=float32),
}),
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Dtype | Keterangan |
---|---|---|---|---|
fiturDict | ||||
episode_return | Tensor | float32 | ||
Langkah | Himpunan data | |||
langkah/tindakan | Tensor | (21,) | float32 | |
langkah/diskon | Tensor | (1,) | float32 | |
langkah/adalah_pertama | Tensor | bool | ||
langkah/is_last | Tensor | bool | ||
langkah/is_terminal | Tensor | bool | ||
langkah/pengamatan | fiturDict | |||
langkah/pengamatan/com_velocity | Tensor | (3,) | float32 | |
langkah/pengamatan/dummy-0 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-1 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-2 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-3 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-4 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-5 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-6 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-7 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-8 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-9 | Tensor | (1,) | float32 | |
langkah/observasi/ekstremitas | Tensor | (12,) | float32 | |
langkah/pengamatan/head_height | Tensor | (1,) | float32 | |
langkah/pengamatan/joint_angles | Tensor | (21,) | float32 | |
langkah/pengamatan/torso_vertical | Tensor | (3,) | float32 | |
langkah/pengamatan/kecepatan | Tensor | (27,) | float32 | |
langkah/hadiah | Tensor | (1,) | float32 |
- Contoh ( tfds.as_dataframe ):
rlu_rwrl/humanoid_walk_combined_challenge_easy_40_percent
Ukuran dataset :
3.01 GiB
Di-cache otomatis ( dokumentasi ): Tidak
Perpecahan :
Membelah | Contoh |
---|---|
'train' | 8.000 |
- Struktur fitur :
FeaturesDict({
'episode_return': float32,
'steps': Dataset({
'action': Tensor(shape=(21,), dtype=float32),
'discount': Tensor(shape=(1,), dtype=float32),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': FeaturesDict({
'com_velocity': Tensor(shape=(3,), dtype=float32),
'dummy-0': Tensor(shape=(1,), dtype=float32),
'dummy-1': Tensor(shape=(1,), dtype=float32),
'dummy-2': Tensor(shape=(1,), dtype=float32),
'dummy-3': Tensor(shape=(1,), dtype=float32),
'dummy-4': Tensor(shape=(1,), dtype=float32),
'dummy-5': Tensor(shape=(1,), dtype=float32),
'dummy-6': Tensor(shape=(1,), dtype=float32),
'dummy-7': Tensor(shape=(1,), dtype=float32),
'dummy-8': Tensor(shape=(1,), dtype=float32),
'dummy-9': Tensor(shape=(1,), dtype=float32),
'extremities': Tensor(shape=(12,), dtype=float32),
'head_height': Tensor(shape=(1,), dtype=float32),
'joint_angles': Tensor(shape=(21,), dtype=float32),
'torso_vertical': Tensor(shape=(3,), dtype=float32),
'velocity': Tensor(shape=(27,), dtype=float32),
}),
'reward': Tensor(shape=(1,), dtype=float32),
}),
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Dtype | Keterangan |
---|---|---|---|---|
fiturDict | ||||
episode_return | Tensor | float32 | ||
Langkah | Himpunan data | |||
langkah/tindakan | Tensor | (21,) | float32 | |
langkah/diskon | Tensor | (1,) | float32 | |
langkah/adalah_pertama | Tensor | bool | ||
langkah/is_last | Tensor | bool | ||
langkah/is_terminal | Tensor | bool | ||
langkah/pengamatan | fiturDict | |||
langkah/pengamatan/com_velocity | Tensor | (3,) | float32 | |
langkah/pengamatan/dummy-0 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-1 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-2 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-3 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-4 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-5 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-6 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-7 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-8 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-9 | Tensor | (1,) | float32 | |
langkah/observasi/ekstremitas | Tensor | (12,) | float32 | |
langkah/pengamatan/head_height | Tensor | (1,) | float32 | |
langkah/pengamatan/joint_angles | Tensor | (21,) | float32 | |
langkah/pengamatan/torso_vertical | Tensor | (3,) | float32 | |
langkah/pengamatan/kecepatan | Tensor | (27,) | float32 | |
langkah/hadiah | Tensor | (1,) | float32 |
- Contoh ( tfds.as_dataframe ):
rlu_rwrl/humanoid_walk_combined_challenge_easy_100_percent
Ukuran dataset :
7.53 GiB
Di-cache otomatis ( dokumentasi ): Tidak
Perpecahan :
Membelah | Contoh |
---|---|
'train' | 20.000 |
- Struktur fitur :
FeaturesDict({
'episode_return': float32,
'steps': Dataset({
'action': Tensor(shape=(21,), dtype=float32),
'discount': Tensor(shape=(1,), dtype=float32),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': FeaturesDict({
'com_velocity': Tensor(shape=(3,), dtype=float32),
'dummy-0': Tensor(shape=(1,), dtype=float32),
'dummy-1': Tensor(shape=(1,), dtype=float32),
'dummy-2': Tensor(shape=(1,), dtype=float32),
'dummy-3': Tensor(shape=(1,), dtype=float32),
'dummy-4': Tensor(shape=(1,), dtype=float32),
'dummy-5': Tensor(shape=(1,), dtype=float32),
'dummy-6': Tensor(shape=(1,), dtype=float32),
'dummy-7': Tensor(shape=(1,), dtype=float32),
'dummy-8': Tensor(shape=(1,), dtype=float32),
'dummy-9': Tensor(shape=(1,), dtype=float32),
'extremities': Tensor(shape=(12,), dtype=float32),
'head_height': Tensor(shape=(1,), dtype=float32),
'joint_angles': Tensor(shape=(21,), dtype=float32),
'torso_vertical': Tensor(shape=(3,), dtype=float32),
'velocity': Tensor(shape=(27,), dtype=float32),
}),
'reward': Tensor(shape=(1,), dtype=float32),
}),
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Dtype | Keterangan |
---|---|---|---|---|
fiturDict | ||||
episode_return | Tensor | float32 | ||
Langkah | Himpunan data | |||
langkah/tindakan | Tensor | (21,) | float32 | |
langkah/diskon | Tensor | (1,) | float32 | |
langkah/adalah_pertama | Tensor | bool | ||
langkah/is_last | Tensor | bool | ||
langkah/is_terminal | Tensor | bool | ||
langkah/pengamatan | fiturDict | |||
langkah/pengamatan/com_velocity | Tensor | (3,) | float32 | |
langkah/pengamatan/dummy-0 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-1 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-2 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-3 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-4 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-5 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-6 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-7 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-8 | Tensor | (1,) | float32 | |
langkah/pengamatan/dummy-9 | Tensor | (1,) | float32 | |
langkah/observasi/ekstremitas | Tensor | (12,) | float32 | |
langkah/pengamatan/head_height | Tensor | (1,) | float32 | |
langkah/pengamatan/joint_angles | Tensor | (21,) | float32 | |
langkah/pengamatan/torso_vertical | Tensor | (3,) | float32 | |
langkah/pengamatan/kecepatan | Tensor | (27,) | float32 | |
langkah/hadiah | Tensor | (1,) | float32 |
- Contoh ( tfds.as_dataframe ):