- Description:
The SNLI corpus (version 1.0) is a collection of 570k human-written English sentence pairs manually labeled for balanced classification with the labels entailment, contradiction, and neutral, supporting the task of natural language inference (NLI), also known as recognizing textual entailment (RTE).
Additional Documentation: Explore on Papers With Code
Homepage: https://nlp.stanford.edu/projects/snli/
Source code:
tfds.datasets.snli.Builder
Versions:
1.1.0
(default): No release notes.
Download size:
90.17 MiB
Dataset size:
87.00 MiB
Auto-cached (documentation): Yes
Splits:
Split | Examples |
---|---|
'test' |
10,000 |
'train' |
550,152 |
'validation' |
10,000 |
- Feature structure:
FeaturesDict({
'hypothesis': Text(shape=(), dtype=string),
'label': ClassLabel(shape=(), dtype=int64, num_classes=3),
'premise': Text(shape=(), dtype=string),
})
- Feature documentation:
Feature | Class | Shape | Dtype | Description |
---|---|---|---|---|
FeaturesDict | ||||
hypothesis | Text | string | ||
label | ClassLabel | int64 | ||
premise | Text | string |
Supervised keys (See
as_supervised
doc):None
Figure (tfds.show_examples): Not supported.
Examples (tfds.as_dataframe):
- Citation:
@inproceedings{snli:emnlp2015,
Author = {Bowman, Samuel R. and Angeli, Gabor and Potts, Christopher, and Manning, Christopher D.},
Booktitle = {Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (EMNLP)},
Publisher = {Association for Computational Linguistics},
Title = {A large annotated corpus for learning natural language inference},
Year = {2015}
}