- Deskripsi :
Kumpulan data multibahasa (60 bahasa) besar-besaran yang berasal dari transkrip TED Talk. Setiap catatan terdiri dari susunan paralel bahasa dan teks. Terjemahan yang hilang dan tidak lengkap akan disaring.
Kode sumber :
tfds.datasets.ted_multi_translate.Builder
Versi :
-
1.1.0
(default): Tidak ada catatan rilis.
-
Ukuran unduhan :
335.91 MiB
Ukuran dataset :
752.30 MiB
Di-cache otomatis ( dokumentasi ): Tidak
Perpecahan :
Membelah | Contoh |
---|---|
'test' | 7.213 |
'train' | 258.098 |
'validation' | 6.049 |
- Struktur fitur :
FeaturesDict({
'talk_name': Text(shape=(), dtype=string),
'translations': TranslationVariableLanguages({
'language': Text(shape=(), dtype=string),
'translation': Text(shape=(), dtype=string),
}),
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Dtype | Keterangan |
---|---|---|---|---|
fiturDict | ||||
nama_bicara | Teks | rangkaian | ||
terjemahan | Terjemahan VariabelBahasa | |||
terjemahan/bahasa | Teks | rangkaian | ||
terjemahan/terjemahan | Teks | rangkaian |
Kunci yang diawasi (Lihat
as_supervised
doc ):None
Gambar ( tfds.show_examples ): Tidak didukung.
Contoh ( tfds.as_dataframe ):
- Kutipan :
@InProceedings{qi-EtAl:2018:N18-2,
author = {Qi, Ye and Sachan, Devendra and Felix, Matthieu and Padmanabhan, Sarguna and Neubig, Graham},
title = {When and Why Are Pre-Trained Word Embeddings Useful for Neural Machine Translation?},
booktitle = {Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)},
month = {June},
year = {2018},
address = {New Orleans, Louisiana},
publisher = {Association for Computational Linguistics},
pages = {529--535},
abstract = {The performance of Neural Machine Translation (NMT) systems often suffers in low-resource scenarios where sufficiently large-scale parallel corpora cannot be obtained. Pre-trained word embeddings have proven to be invaluable for improving performance in natural language analysis tasks, which often suffer from paucity of data. However, their utility for NMT has not been extensively explored. In this work, we perform five sets of experiments that analyze when we can expect pre-trained word embeddings to help in NMT tasks. We show that such embeddings can be surprisingly effective in some cases -- providing gains of up to 20 BLEU points in the most favorable setting.},
url = {http://www.aclweb.org/anthology/N18-2084}
}
, - Deskripsi :
Kumpulan data multibahasa (60 bahasa) besar-besaran yang berasal dari transkrip TED Talk. Setiap catatan terdiri dari susunan paralel bahasa dan teks. Terjemahan yang hilang dan tidak lengkap akan disaring.
Kode sumber :
tfds.datasets.ted_multi_translate.Builder
Versi :
-
1.1.0
(default): Tidak ada catatan rilis.
-
Ukuran unduhan :
335.91 MiB
Ukuran dataset :
752.30 MiB
Di-cache otomatis ( dokumentasi ): Tidak
Perpecahan :
Membelah | Contoh |
---|---|
'test' | 7.213 |
'train' | 258.098 |
'validation' | 6.049 |
- Struktur fitur :
FeaturesDict({
'talk_name': Text(shape=(), dtype=string),
'translations': TranslationVariableLanguages({
'language': Text(shape=(), dtype=string),
'translation': Text(shape=(), dtype=string),
}),
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Dtype | Keterangan |
---|---|---|---|---|
fiturDict | ||||
nama_bicara | Teks | rangkaian | ||
terjemahan | Terjemahan VariabelBahasa | |||
terjemahan/bahasa | Teks | rangkaian | ||
terjemahan/terjemahan | Teks | rangkaian |
Kunci yang diawasi (Lihat
as_supervised
doc ):None
Gambar ( tfds.show_examples ): Tidak didukung.
Contoh ( tfds.as_dataframe ):
- Kutipan :
@InProceedings{qi-EtAl:2018:N18-2,
author = {Qi, Ye and Sachan, Devendra and Felix, Matthieu and Padmanabhan, Sarguna and Neubig, Graham},
title = {When and Why Are Pre-Trained Word Embeddings Useful for Neural Machine Translation?},
booktitle = {Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)},
month = {June},
year = {2018},
address = {New Orleans, Louisiana},
publisher = {Association for Computational Linguistics},
pages = {529--535},
abstract = {The performance of Neural Machine Translation (NMT) systems often suffers in low-resource scenarios where sufficiently large-scale parallel corpora cannot be obtained. Pre-trained word embeddings have proven to be invaluable for improving performance in natural language analysis tasks, which often suffer from paucity of data. However, their utility for NMT has not been extensively explored. In this work, we perform five sets of experiments that analyze when we can expect pre-trained word embeddings to help in NMT tasks. We show that such embeddings can be surprisingly effective in some cases -- providing gains of up to 20 BLEU points in the most favorable setting.},
url = {http://www.aclweb.org/anthology/N18-2084}
}