Attend the Women in ML Symposium on December 7 Register now

nli_tr

References:

snli_tr

Use the following command to load this dataset in TFDS:

ds = tfds.load('huggingface:nli_tr/snli_tr')
  • Description:
The Natural Language Inference in Turkish (NLI-TR) is a set of two large scale datasets that were obtained by translating the foundational NLI corpora (SNLI and MNLI) using Amazon Translate.
  • License: No known license
  • Version: 1.0.0
  • Splits:
Split Examples
'test' 10000
'train' 550152
'validation' 10000
  • Features:
{
    "idx": {
        "dtype": "int32",
        "id": null,
        "_type": "Value"
    },
    "premise": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "hypothesis": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "label": {
        "num_classes": 3,
        "names": [
            "entailment",
            "neutral",
            "contradiction"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    }
}

multinli_tr

Use the following command to load this dataset in TFDS:

ds = tfds.load('huggingface:nli_tr/multinli_tr')
  • Description:
The Natural Language Inference in Turkish (NLI-TR) is a set of two large scale datasets that were obtained by translating the foundational NLI corpora (SNLI and MNLI) using Amazon Translate.
  • License: No known license
  • Version: 1.0.0
  • Splits:
Split Examples
'train' 392702
'validation_matched' 10000
'validation_mismatched' 10000
  • Features:
{
    "idx": {
        "dtype": "int32",
        "id": null,
        "_type": "Value"
    },
    "premise": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "hypothesis": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "label": {
        "num_classes": 3,
        "names": [
            "entailment",
            "neutral",
            "contradiction"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    }
}