Ссылки:
ru_annotated
Используйте следующую команду, чтобы загрузить этот набор данных в TFDS:
ds = tfds.load('huggingface:xed_en_fi/en_annotated')
- Описание :
A multilingual fine-grained emotion dataset. The dataset consists of human annotated Finnish (25k) and English sentences (30k). Plutchik’s
core emotions are used to annotate the dataset with the addition of neutral to create a multilabel multiclass
dataset. The dataset is carefully evaluated using language-specific BERT models and SVMs to
show that XED performs on par with other similar datasets and is therefore a useful tool for
sentiment analysis and emotion detection.
- Лицензия : Лицензия: Международная лицензия Creative Commons Attribution 4.0 (CC-BY)
- Версия : 1.1.0
- Расколы :
Расколоть | Примеры |
---|---|
'train' | 17528 |
- Функции :
{
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"feature": {
"num_classes": 9,
"names": [
"neutral",
"anger",
"anticipation",
"disgust",
"fear",
"joy",
"sadness",
"surprise",
"trust"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
ru_neutral
Используйте следующую команду, чтобы загрузить этот набор данных в TFDS:
ds = tfds.load('huggingface:xed_en_fi/en_neutral')
- Описание :
A multilingual fine-grained emotion dataset. The dataset consists of human annotated Finnish (25k) and English sentences (30k). Plutchik’s
core emotions are used to annotate the dataset with the addition of neutral to create a multilabel multiclass
dataset. The dataset is carefully evaluated using language-specific BERT models and SVMs to
show that XED performs on par with other similar datasets and is therefore a useful tool for
sentiment analysis and emotion detection.
- Лицензия : Лицензия: Международная лицензия Creative Commons Attribution 4.0 (CC-BY)
- Версия : 1.1.0
- Расколы :
Расколоть | Примеры |
---|---|
'train' | 9675 |
- Функции :
{
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"num_classes": 9,
"names": [
"neutral",
"anger",
"anticipation",
"disgust",
"fear",
"joy",
"sadness",
"surprise",
"trust"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
}
}
fi_annotated
Используйте следующую команду, чтобы загрузить этот набор данных в TFDS:
ds = tfds.load('huggingface:xed_en_fi/fi_annotated')
- Описание :
A multilingual fine-grained emotion dataset. The dataset consists of human annotated Finnish (25k) and English sentences (30k). Plutchik’s
core emotions are used to annotate the dataset with the addition of neutral to create a multilabel multiclass
dataset. The dataset is carefully evaluated using language-specific BERT models and SVMs to
show that XED performs on par with other similar datasets and is therefore a useful tool for
sentiment analysis and emotion detection.
- Лицензия : Лицензия: Международная лицензия Creative Commons Attribution 4.0 (CC-BY)
- Версия : 1.1.0
- Расколы :
Расколоть | Примеры |
---|---|
'train' | 14449 |
- Функции :
{
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"feature": {
"num_classes": 9,
"names": [
"neutral",
"anger",
"anticipation",
"disgust",
"fear",
"joy",
"sadness",
"surprise",
"trust"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
фи_нейтральный
Используйте следующую команду, чтобы загрузить этот набор данных в TFDS:
ds = tfds.load('huggingface:xed_en_fi/fi_neutral')
- Описание :
A multilingual fine-grained emotion dataset. The dataset consists of human annotated Finnish (25k) and English sentences (30k). Plutchik’s
core emotions are used to annotate the dataset with the addition of neutral to create a multilabel multiclass
dataset. The dataset is carefully evaluated using language-specific BERT models and SVMs to
show that XED performs on par with other similar datasets and is therefore a useful tool for
sentiment analysis and emotion detection.
- Лицензия : Лицензия: Международная лицензия Creative Commons Attribution 4.0 (CC-BY)
- Версия : 1.1.0
- Расколы :
Расколоть | Примеры |
---|---|
'train' | 10794 |
- Функции :
{
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"num_classes": 9,
"names": [
"neutral",
"anger",
"anticipation",
"disgust",
"fear",
"joy",
"sadness",
"surprise",
"trust"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
}
}