Referencias:
en_anotado
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:xed_en_fi/en_annotated')
- Descripción :
A multilingual fine-grained emotion dataset. The dataset consists of human annotated Finnish (25k) and English sentences (30k). Plutchik’s
core emotions are used to annotate the dataset with the addition of neutral to create a multilabel multiclass
dataset. The dataset is carefully evaluated using language-specific BERT models and SVMs to
show that XED performs on par with other similar datasets and is therefore a useful tool for
sentiment analysis and emotion detection.
- Licencia : Licencia: Licencia Internacional Creative Commons Attribution 4.0 (CC-BY)
- Versión : 1.1.0
- Divisiones :
Dividir | Ejemplos |
---|---|
'train' | 17528 |
- Características :
{
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"feature": {
"num_classes": 9,
"names": [
"neutral",
"anger",
"anticipation",
"disgust",
"fear",
"joy",
"sadness",
"surprise",
"trust"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
es_neutral
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:xed_en_fi/en_neutral')
- Descripción :
A multilingual fine-grained emotion dataset. The dataset consists of human annotated Finnish (25k) and English sentences (30k). Plutchik’s
core emotions are used to annotate the dataset with the addition of neutral to create a multilabel multiclass
dataset. The dataset is carefully evaluated using language-specific BERT models and SVMs to
show that XED performs on par with other similar datasets and is therefore a useful tool for
sentiment analysis and emotion detection.
- Licencia : Licencia: Licencia Internacional Creative Commons Attribution 4.0 (CC-BY)
- Versión : 1.1.0
- Divisiones :
Dividir | Ejemplos |
---|---|
'train' | 9675 |
- Características :
{
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"num_classes": 9,
"names": [
"neutral",
"anger",
"anticipation",
"disgust",
"fear",
"joy",
"sadness",
"surprise",
"trust"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
}
}
fi_anotado
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:xed_en_fi/fi_annotated')
- Descripción :
A multilingual fine-grained emotion dataset. The dataset consists of human annotated Finnish (25k) and English sentences (30k). Plutchik’s
core emotions are used to annotate the dataset with the addition of neutral to create a multilabel multiclass
dataset. The dataset is carefully evaluated using language-specific BERT models and SVMs to
show that XED performs on par with other similar datasets and is therefore a useful tool for
sentiment analysis and emotion detection.
- Licencia : Licencia: Licencia Internacional Creative Commons Attribution 4.0 (CC-BY)
- Versión : 1.1.0
- Divisiones :
Dividir | Ejemplos |
---|---|
'train' | 14449 |
- Características :
{
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"feature": {
"num_classes": 9,
"names": [
"neutral",
"anger",
"anticipation",
"disgust",
"fear",
"joy",
"sadness",
"surprise",
"trust"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
fi_neutral
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:xed_en_fi/fi_neutral')
- Descripción :
A multilingual fine-grained emotion dataset. The dataset consists of human annotated Finnish (25k) and English sentences (30k). Plutchik’s
core emotions are used to annotate the dataset with the addition of neutral to create a multilabel multiclass
dataset. The dataset is carefully evaluated using language-specific BERT models and SVMs to
show that XED performs on par with other similar datasets and is therefore a useful tool for
sentiment analysis and emotion detection.
- Licencia : Licencia: Licencia Internacional Creative Commons Attribution 4.0 (CC-BY)
- Versión : 1.1.0
- Divisiones :
Dividir | Ejemplos |
---|---|
'train' | 10794 |
- Características :
{
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"num_classes": 9,
"names": [
"neutral",
"anger",
"anticipation",
"disgust",
"fear",
"joy",
"sadness",
"surprise",
"trust"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
}
}