asu_table_top_converted_externally_to_rlds
Stay organized with collections
Save and categorize content based on your preferences.
UR5 performing table-top pick/place/rotate tasks
Split |
Examples |
'train' |
110 |
FeaturesDict({
'episode_metadata': FeaturesDict({
'file_path': Text(shape=(), dtype=string),
}),
'steps': Dataset({
'action': Tensor(shape=(7,), dtype=float32, description=Robot action, consists of [7x joint velocities, 2x gripper velocities, 1x terminate episode].),
'action_delta': Tensor(shape=(7,), dtype=float32, description=Robot delta action, consists of [7x joint velocities, 2x gripper velocities, 1x terminate episode].),
'action_inst': Text(shape=(), dtype=string),
'discount': Scalar(shape=(), dtype=float32, description=Discount if provided, default to 1.),
'goal_object': Text(shape=(), dtype=string),
'ground_truth_states': FeaturesDict({
'EE': Tensor(shape=(6,), dtype=float32, description=xyzrpy),
'bottle': Tensor(shape=(6,), dtype=float32, description=xyzrpy),
'bread': Tensor(shape=(6,), dtype=float32, description=xyzrpy),
'coke': Tensor(shape=(6,), dtype=float32, description=xyzrpy),
'cube': Tensor(shape=(6,), dtype=float32, description=xyzrpy),
'milk': Tensor(shape=(6,), dtype=float32, description=xyzrpy),
'pepsi': Tensor(shape=(6,), dtype=float32, description=xyzrpy),
}),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'language_embedding': Tensor(shape=(512,), dtype=float32, description=Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5),
'language_instruction': Text(shape=(), dtype=string),
'observation': FeaturesDict({
'image': Image(shape=(224, 224, 3), dtype=uint8, description=Main camera RGB observation.),
'state': Tensor(shape=(7,), dtype=float32, description=Robot state, consists of [6x robot joint angles, 1x gripper position].),
'state_vel': Tensor(shape=(7,), dtype=float32, description=Robot joint velocity, consists of [6x robot joint angles, 1x gripper position].),
}),
'reward': Scalar(shape=(), dtype=float32, description=Reward if provided, 1 on final step for demos.),
}),
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
episode_metadata |
FeaturesDict |
|
|
|
episode_metadata/file_path |
Text |
|
string |
Path to the original data file. |
steps |
Dataset |
|
|
|
steps/action |
Tensor |
(7,) |
float32 |
Robot action, consists of [7x joint velocities, 2x gripper velocities, 1x terminate episode]. |
steps/action_delta |
Tensor |
(7,) |
float32 |
Robot delta action, consists of [7x joint velocities, 2x gripper velocities, 1x terminate episode]. |
steps/action_inst |
Text |
|
string |
Action to be performed. |
steps/discount |
Scalar |
|
float32 |
Discount if provided, default to 1. |
steps/goal_object |
Text |
|
string |
Object to be manipulated with. |
steps/ground_truth_states |
FeaturesDict |
|
|
|
steps/ground_truth_states/EE |
Tensor |
(6,) |
float32 |
xyzrpy |
steps/ground_truth_states/bottle |
Tensor |
(6,) |
float32 |
xyzrpy |
steps/ground_truth_states/bread |
Tensor |
(6,) |
float32 |
xyzrpy |
steps/ground_truth_states/coke |
Tensor |
(6,) |
float32 |
xyzrpy |
steps/ground_truth_states/cube |
Tensor |
(6,) |
float32 |
xyzrpy |
steps/ground_truth_states/milk |
Tensor |
(6,) |
float32 |
xyzrpy |
steps/ground_truth_states/pepsi |
Tensor |
(6,) |
float32 |
xyzrpy |
steps/is_first |
Tensor |
|
bool |
|
steps/is_last |
Tensor |
|
bool |
|
steps/is_terminal |
Tensor |
|
bool |
|
steps/language_embedding |
Tensor |
(512,) |
float32 |
Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5 |
steps/language_instruction |
Text |
|
string |
Language Instruction. |
steps/observation |
FeaturesDict |
|
|
|
steps/observation/image |
Image |
(224, 224, 3) |
uint8 |
Main camera RGB observation. |
steps/observation/state |
Tensor |
(7,) |
float32 |
Robot state, consists of [6x robot joint angles, 1x gripper position]. |
steps/observation/state_vel |
Tensor |
(7,) |
float32 |
Robot joint velocity, consists of [6x robot joint angles, 1x gripper position]. |
steps/reward |
Scalar |
|
float32 |
Reward if provided, 1 on final step for demos. |
@inproceedings{zhou2023modularity,
title={Modularity through Attention: Efficient Training and Transfer of Language-Conditioned Policies for Robot Manipulation},
author={Zhou, Yifan and Sonawani, Shubham and Phielipp, Mariano and Stepputtis, Simon and Amor, Heni},
booktitle={Conference on Robot Learning},
pages={1684--1695},
year={2023},
organization={PMLR}
}
@article{zhou2023learning,
title={Learning modular language-conditioned robot policies through attention},
author={Zhou, Yifan and Sonawani, Shubham and Phielipp, Mariano and Ben Amor, Heni and Stepputtis, Simon},
journal={Autonomous Robots},
pages={1--21},
year={2023},
publisher={Springer}
}
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-09-03 UTC.
[null,null,["Last updated 2024-09-03 UTC."],[],[],null,["# asu_table_top_converted_externally_to_rlds\n\n\u003cbr /\u003e\n\n- **Description**:\n\nUR5 performing table-top pick/place/rotate tasks\n\n- **Homepage** :\n \u003chttps://link.springer.com/article/10.1007/s10514-023-10129-1\u003e\n\n- **Source code** :\n [`tfds.robotics.rtx.AsuTableTopConvertedExternallyToRlds`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/robotics/rtx/rtx.py)\n\n- **Versions**:\n\n - **`0.1.0`** (default): Initial release.\n- **Download size** : `Unknown size`\n\n- **Dataset size** : `737.60 MiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n No\n\n- **Splits**:\n\n| Split | Examples |\n|-----------|----------|\n| `'train'` | 110 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'episode_metadata': FeaturesDict({\n 'file_path': Text(shape=(), dtype=string),\n }),\n 'steps': Dataset({\n 'action': Tensor(shape=(7,), dtype=float32, description=Robot action, consists of [7x joint velocities, 2x gripper velocities, 1x terminate episode].),\n 'action_delta': Tensor(shape=(7,), dtype=float32, description=Robot delta action, consists of [7x joint velocities, 2x gripper velocities, 1x terminate episode].),\n 'action_inst': Text(shape=(), dtype=string),\n 'discount': Scalar(shape=(), dtype=float32, description=Discount if provided, default to 1.),\n 'goal_object': Text(shape=(), dtype=string),\n 'ground_truth_states': FeaturesDict({\n 'EE': Tensor(shape=(6,), dtype=float32, description=xyzrpy),\n 'bottle': Tensor(shape=(6,), dtype=float32, description=xyzrpy),\n 'bread': Tensor(shape=(6,), dtype=float32, description=xyzrpy),\n 'coke': Tensor(shape=(6,), dtype=float32, description=xyzrpy),\n 'cube': Tensor(shape=(6,), dtype=float32, description=xyzrpy),\n 'milk': Tensor(shape=(6,), dtype=float32, description=xyzrpy),\n 'pepsi': Tensor(shape=(6,), dtype=float32, description=xyzrpy),\n }),\n 'is_first': bool,\n 'is_last': bool,\n 'is_terminal': bool,\n 'language_embedding': Tensor(shape=(512,), dtype=float32, description=Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5),\n 'language_instruction': Text(shape=(), dtype=string),\n 'observation': FeaturesDict({\n 'image': Image(shape=(224, 224, 3), dtype=uint8, description=Main camera RGB observation.),\n 'state': Tensor(shape=(7,), dtype=float32, description=Robot state, consists of [6x robot joint angles, 1x gripper position].),\n 'state_vel': Tensor(shape=(7,), dtype=float32, description=Robot joint velocity, consists of [6x robot joint angles, 1x gripper position].),\n }),\n 'reward': Scalar(shape=(), dtype=float32, description=Reward if provided, 1 on final step for demos.),\n }),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|----------------------------------|--------------|---------------|---------|-------------------------------------------------------------------------------------------------------|\n| | FeaturesDict | | | |\n| episode_metadata | FeaturesDict | | | |\n| episode_metadata/file_path | Text | | string | Path to the original data file. |\n| steps | Dataset | | | |\n| steps/action | Tensor | (7,) | float32 | Robot action, consists of \\[7x joint velocities, 2x gripper velocities, 1x terminate episode\\]. |\n| steps/action_delta | Tensor | (7,) | float32 | Robot delta action, consists of \\[7x joint velocities, 2x gripper velocities, 1x terminate episode\\]. |\n| steps/action_inst | Text | | string | Action to be performed. |\n| steps/discount | Scalar | | float32 | Discount if provided, default to 1. |\n| steps/goal_object | Text | | string | Object to be manipulated with. |\n| steps/ground_truth_states | FeaturesDict | | | |\n| steps/ground_truth_states/EE | Tensor | (6,) | float32 | xyzrpy |\n| steps/ground_truth_states/bottle | Tensor | (6,) | float32 | xyzrpy |\n| steps/ground_truth_states/bread | Tensor | (6,) | float32 | xyzrpy |\n| steps/ground_truth_states/coke | Tensor | (6,) | float32 | xyzrpy |\n| steps/ground_truth_states/cube | Tensor | (6,) | float32 | xyzrpy |\n| steps/ground_truth_states/milk | Tensor | (6,) | float32 | xyzrpy |\n| steps/ground_truth_states/pepsi | Tensor | (6,) | float32 | xyzrpy |\n| steps/is_first | Tensor | | bool | |\n| steps/is_last | Tensor | | bool | |\n| steps/is_terminal | Tensor | | bool | |\n| steps/language_embedding | Tensor | (512,) | float32 | Kona language embedding. See \u003chttps://tfhub.dev/google/universal-sentence-encoder-large/5\u003e |\n| steps/language_instruction | Text | | string | Language Instruction. |\n| steps/observation | FeaturesDict | | | |\n| steps/observation/image | Image | (224, 224, 3) | uint8 | Main camera RGB observation. |\n| steps/observation/state | Tensor | (7,) | float32 | Robot state, consists of \\[6x robot joint angles, 1x gripper position\\]. |\n| steps/observation/state_vel | Tensor | (7,) | float32 | Robot joint velocity, consists of \\[6x robot joint angles, 1x gripper position\\]. |\n| steps/reward | Scalar | | float32 | Reward if provided, 1 on final step for demos. |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `None`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n Not supported.\n\n- **Examples**\n ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @inproceedings{zhou2023modularity,\n title={Modularity through Attention: Efficient Training and Transfer of Language-Conditioned Policies for Robot Manipulation},\n author={Zhou, Yifan and Sonawani, Shubham and Phielipp, Mariano and Stepputtis, Simon and Amor, Heni},\n booktitle={Conference on Robot Learning},\n pages={1684--1695},\n year={2023},\n organization={PMLR}\n }\n @article{zhou2023learning,\n title={Learning modular language-conditioned robot policies through attention},\n author={Zhou, Yifan and Sonawani, Shubham and Phielipp, Mariano and Ben Amor, Heni and Stepputtis, Simon},\n journal={Autonomous Robots},\n pages={1--21},\n year={2023},\n publisher={Springer}\n }"]]