austin_sailor_dataset_converted_externally_to_rlds
Stay organized with collections
Save and categorize content based on your preferences.
Franka tablesetting tasks
Split |
Examples |
'train' |
240 |
FeaturesDict({
'episode_metadata': FeaturesDict({
'file_path': Text(shape=(), dtype=string),
}),
'steps': Dataset({
'action': Tensor(shape=(7,), dtype=float32, description=Robot action, consists of [3x ee relative pos, 3x ee relative rotation, 1x gripper action].),
'discount': Scalar(shape=(), dtype=float32, description=Discount if provided, default to 1.),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'language_embedding': Tensor(shape=(512,), dtype=float32, description=Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5),
'language_instruction': Text(shape=(), dtype=string),
'observation': FeaturesDict({
'image': Image(shape=(128, 128, 3), dtype=uint8, description=Main camera RGB observation.),
'state': Tensor(shape=(8,), dtype=float32, description=Default robot state, consists of [3x robot ee pos, 3x ee quat, 1x gripper state].),
'state_ee': Tensor(shape=(16,), dtype=float32, description=End-effector state, represented as 4x4 homogeneous transformation matrix of ee pose.),
'state_gripper': Tensor(shape=(1,), dtype=float32, description=Robot gripper opening width. Ranges between ~0 (closed) to ~0.077 (open)),
'state_joint': Tensor(shape=(7,), dtype=float32, description=Robot 7-dof joint information (not used in original SAILOR dataset).),
'wrist_image': Image(shape=(128, 128, 3), dtype=uint8, description=Wrist camera RGB observation.),
}),
'reward': Scalar(shape=(), dtype=float32, description=True on last step of the episode.),
}),
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
episode_metadata |
FeaturesDict |
|
|
|
episode_metadata/file_path |
Text |
|
string |
Path to the original data file. |
steps |
Dataset |
|
|
|
steps/action |
Tensor |
(7,) |
float32 |
Robot action, consists of [3x ee relative pos, 3x ee relative rotation, 1x gripper action]. |
steps/discount |
Scalar |
|
float32 |
Discount if provided, default to 1. |
steps/is_first |
Tensor |
|
bool |
|
steps/is_last |
Tensor |
|
bool |
|
steps/is_terminal |
Tensor |
|
bool |
|
steps/language_embedding |
Tensor |
(512,) |
float32 |
Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5 |
steps/language_instruction |
Text |
|
string |
Language Instruction. |
steps/observation |
FeaturesDict |
|
|
|
steps/observation/image |
Image |
(128, 128, 3) |
uint8 |
Main camera RGB observation. |
steps/observation/state |
Tensor |
(8,) |
float32 |
Default robot state, consists of [3x robot ee pos, 3x ee quat, 1x gripper state]. |
steps/observation/state_ee |
Tensor |
(16,) |
float32 |
End-effector state, represented as 4x4 homogeneous transformation matrix of ee pose. |
steps/observation/state_gripper |
Tensor |
(1,) |
float32 |
Robot gripper opening width. Ranges between ~0 (closed) to ~0.077 (open) |
steps/observation/state_joint |
Tensor |
(7,) |
float32 |
Robot 7-dof joint information (not used in original SAILOR dataset). |
steps/observation/wrist_image |
Image |
(128, 128, 3) |
uint8 |
Wrist camera RGB observation. |
steps/reward |
Scalar |
|
float32 |
True on last step of the episode. |
@inproceedings{nasiriany2022sailor,
title={Learning and Retrieval from Prior Data for Skill-based Imitation Learning},
author={Soroush Nasiriany and Tian Gao and Ajay Mandlekar and Yuke Zhu},
booktitle={Conference on Robot Learning (CoRL)},
year={2022}
}
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-09-03 UTC.
[null,null,["Last updated 2024-09-03 UTC."],[],[],null,["# austin_sailor_dataset_converted_externally_to_rlds\n\n\u003cbr /\u003e\n\n- **Description**:\n\nFranka tablesetting tasks\n\n- **Homepage** :\n \u003chttps://ut-austin-rpl.github.io/sailor/\u003e\n\n- **Source code** :\n [`tfds.robotics.rtx.AustinSailorDatasetConvertedExternallyToRlds`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/robotics/rtx/rtx.py)\n\n- **Versions**:\n\n - **`0.1.0`** (default): Initial release.\n- **Download size** : `Unknown size`\n\n- **Dataset size** : `18.85 GiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n No\n\n- **Splits**:\n\n| Split | Examples |\n|-----------|----------|\n| `'train'` | 240 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'episode_metadata': FeaturesDict({\n 'file_path': Text(shape=(), dtype=string),\n }),\n 'steps': Dataset({\n 'action': Tensor(shape=(7,), dtype=float32, description=Robot action, consists of [3x ee relative pos, 3x ee relative rotation, 1x gripper action].),\n 'discount': Scalar(shape=(), dtype=float32, description=Discount if provided, default to 1.),\n 'is_first': bool,\n 'is_last': bool,\n 'is_terminal': bool,\n 'language_embedding': Tensor(shape=(512,), dtype=float32, description=Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5),\n 'language_instruction': Text(shape=(), dtype=string),\n 'observation': FeaturesDict({\n 'image': Image(shape=(128, 128, 3), dtype=uint8, description=Main camera RGB observation.),\n 'state': Tensor(shape=(8,), dtype=float32, description=Default robot state, consists of [3x robot ee pos, 3x ee quat, 1x gripper state].),\n 'state_ee': Tensor(shape=(16,), dtype=float32, description=End-effector state, represented as 4x4 homogeneous transformation matrix of ee pose.),\n 'state_gripper': Tensor(shape=(1,), dtype=float32, description=Robot gripper opening width. Ranges between ~0 (closed) to ~0.077 (open)),\n 'state_joint': Tensor(shape=(7,), dtype=float32, description=Robot 7-dof joint information (not used in original SAILOR dataset).),\n 'wrist_image': Image(shape=(128, 128, 3), dtype=uint8, description=Wrist camera RGB observation.),\n }),\n 'reward': Scalar(shape=(), dtype=float32, description=True on last step of the episode.),\n }),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|---------------------------------|--------------|---------------|---------|-----------------------------------------------------------------------------------------------|\n| | FeaturesDict | | | |\n| episode_metadata | FeaturesDict | | | |\n| episode_metadata/file_path | Text | | string | Path to the original data file. |\n| steps | Dataset | | | |\n| steps/action | Tensor | (7,) | float32 | Robot action, consists of \\[3x ee relative pos, 3x ee relative rotation, 1x gripper action\\]. |\n| steps/discount | Scalar | | float32 | Discount if provided, default to 1. |\n| steps/is_first | Tensor | | bool | |\n| steps/is_last | Tensor | | bool | |\n| steps/is_terminal | Tensor | | bool | |\n| steps/language_embedding | Tensor | (512,) | float32 | Kona language embedding. See \u003chttps://tfhub.dev/google/universal-sentence-encoder-large/5\u003e |\n| steps/language_instruction | Text | | string | Language Instruction. |\n| steps/observation | FeaturesDict | | | |\n| steps/observation/image | Image | (128, 128, 3) | uint8 | Main camera RGB observation. |\n| steps/observation/state | Tensor | (8,) | float32 | Default robot state, consists of \\[3x robot ee pos, 3x ee quat, 1x gripper state\\]. |\n| steps/observation/state_ee | Tensor | (16,) | float32 | End-effector state, represented as 4x4 homogeneous transformation matrix of ee pose. |\n| steps/observation/state_gripper | Tensor | (1,) | float32 | Robot gripper opening width. Ranges between \\~0 (closed) to \\~0.077 (open) |\n| steps/observation/state_joint | Tensor | (7,) | float32 | Robot 7-dof joint information (not used in original SAILOR dataset). |\n| steps/observation/wrist_image | Image | (128, 128, 3) | uint8 | Wrist camera RGB observation. |\n| steps/reward | Scalar | | float32 | True on last step of the episode. |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `None`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n Not supported.\n\n- **Examples**\n ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @inproceedings{nasiriany2022sailor,\n title={Learning and Retrieval from Prior Data for Skill-based Imitation Learning},\n author={Soroush Nasiriany and Tian Gao and Ajay Mandlekar and Yuke Zhu},\n booktitle={Conference on Robot Learning (CoRL)},\n year={2022}\n }"]]