austin_sirius_dataset_converted_externally_to_rlds
Stay organized with collections
Save and categorize content based on your preferences.
Franka tabletop manipulation tasks
Split |
Examples |
'train' |
559 |
FeaturesDict({
'episode_metadata': FeaturesDict({
'file_path': Text(shape=(), dtype=string),
}),
'steps': Dataset({
'action': Tensor(shape=(7,), dtype=float32, description=Robot action, consists of [3x ee relative pos, 3x ee relative rotation, 1x gripper action].),
'action_mode': Tensor(shape=(1,), dtype=float32, description=Type of interaction. -1: initial human demonstration. 1: intervention. 0: autonomuos robot execution (includes pre-intervention class)),
'discount': Scalar(shape=(), dtype=float32, description=Discount if provided, default to 1.),
'intv_label': Tensor(shape=(1,), dtype=float32, description=Same as action_modes, except 15 timesteps preceding intervention are labeled as -10.),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'language_embedding': Tensor(shape=(512,), dtype=float32, description=Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5),
'language_instruction': Text(shape=(), dtype=string),
'observation': FeaturesDict({
'image': Image(shape=(84, 84, 3), dtype=uint8, description=Main camera RGB observation.),
'state': Tensor(shape=(8,), dtype=float32, description=Default robot state, consists of [7x robot joint state, 1x gripper state].),
'state_ee': Tensor(shape=(16,), dtype=float32, description=End-effector state, represented as 4x4 homogeneous transformation matrix of ee pose.),
'state_gripper': Tensor(shape=(1,), dtype=float32, description=Robot gripper opening width. Ranges between ~0 (closed) to ~0.077 (open)),
'state_joint': Tensor(shape=(7,), dtype=float32, description=Robot 7-dof joint information.),
'wrist_image': Image(shape=(84, 84, 3), dtype=uint8, description=Wrist camera RGB observation.),
}),
'reward': Scalar(shape=(), dtype=float32, description=Reward if provided, 1 on final step for demos.),
}),
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
episode_metadata |
FeaturesDict |
|
|
|
episode_metadata/file_path |
Text |
|
string |
Path to the original data file. |
steps |
Dataset |
|
|
|
steps/action |
Tensor |
(7,) |
float32 |
Robot action, consists of [3x ee relative pos, 3x ee relative rotation, 1x gripper action]. |
steps/action_mode |
Tensor |
(1,) |
float32 |
Type of interaction. -1: initial human demonstration. 1: intervention. 0: autonomuos robot execution (includes pre-intervention class) |
steps/discount |
Scalar |
|
float32 |
Discount if provided, default to 1. |
steps/intv_label |
Tensor |
(1,) |
float32 |
Same as action_modes, except 15 timesteps preceding intervention are labeled as -10. |
steps/is_first |
Tensor |
|
bool |
|
steps/is_last |
Tensor |
|
bool |
|
steps/is_terminal |
Tensor |
|
bool |
|
steps/language_embedding |
Tensor |
(512,) |
float32 |
Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5 |
steps/language_instruction |
Text |
|
string |
Language Instruction. |
steps/observation |
FeaturesDict |
|
|
|
steps/observation/image |
Image |
(84, 84, 3) |
uint8 |
Main camera RGB observation. |
steps/observation/state |
Tensor |
(8,) |
float32 |
Default robot state, consists of [7x robot joint state, 1x gripper state]. |
steps/observation/state_ee |
Tensor |
(16,) |
float32 |
End-effector state, represented as 4x4 homogeneous transformation matrix of ee pose. |
steps/observation/state_gripper |
Tensor |
(1,) |
float32 |
Robot gripper opening width. Ranges between ~0 (closed) to ~0.077 (open) |
steps/observation/state_joint |
Tensor |
(7,) |
float32 |
Robot 7-dof joint information. |
steps/observation/wrist_image |
Image |
(84, 84, 3) |
uint8 |
Wrist camera RGB observation. |
steps/reward |
Scalar |
|
float32 |
Reward if provided, 1 on final step for demos. |
@inproceedings{liu2022robot,
title = {Robot Learning on the Job: Human-in-the-Loop Autonomy and Learning During Deployment},
author = {Huihan Liu and Soroush Nasiriany and Lance Zhang and Zhiyao Bao and Yuke Zhu},
booktitle = {Robotics: Science and Systems (RSS)},
year = {2023}
}
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-09-03 UTC.
[null,null,["Last updated 2024-09-03 UTC."],[],[],null,["# austin_sirius_dataset_converted_externally_to_rlds\n\n\u003cbr /\u003e\n\n- **Description**:\n\nFranka tabletop manipulation tasks\n\n- **Homepage** :\n \u003chttps://ut-austin-rpl.github.io/sirius/\u003e\n\n- **Source code** :\n [`tfds.robotics.rtx.AustinSiriusDatasetConvertedExternallyToRlds`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/robotics/rtx/rtx.py)\n\n- **Versions**:\n\n - **`0.1.0`** (default): Initial release.\n- **Download size** : `Unknown size`\n\n- **Dataset size** : `6.55 GiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n No\n\n- **Splits**:\n\n| Split | Examples |\n|-----------|----------|\n| `'train'` | 559 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'episode_metadata': FeaturesDict({\n 'file_path': Text(shape=(), dtype=string),\n }),\n 'steps': Dataset({\n 'action': Tensor(shape=(7,), dtype=float32, description=Robot action, consists of [3x ee relative pos, 3x ee relative rotation, 1x gripper action].),\n 'action_mode': Tensor(shape=(1,), dtype=float32, description=Type of interaction. -1: initial human demonstration. 1: intervention. 0: autonomuos robot execution (includes pre-intervention class)),\n 'discount': Scalar(shape=(), dtype=float32, description=Discount if provided, default to 1.),\n 'intv_label': Tensor(shape=(1,), dtype=float32, description=Same as action_modes, except 15 timesteps preceding intervention are labeled as -10.),\n 'is_first': bool,\n 'is_last': bool,\n 'is_terminal': bool,\n 'language_embedding': Tensor(shape=(512,), dtype=float32, description=Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5),\n 'language_instruction': Text(shape=(), dtype=string),\n 'observation': FeaturesDict({\n 'image': Image(shape=(84, 84, 3), dtype=uint8, description=Main camera RGB observation.),\n 'state': Tensor(shape=(8,), dtype=float32, description=Default robot state, consists of [7x robot joint state, 1x gripper state].),\n 'state_ee': Tensor(shape=(16,), dtype=float32, description=End-effector state, represented as 4x4 homogeneous transformation matrix of ee pose.),\n 'state_gripper': Tensor(shape=(1,), dtype=float32, description=Robot gripper opening width. Ranges between ~0 (closed) to ~0.077 (open)),\n 'state_joint': Tensor(shape=(7,), dtype=float32, description=Robot 7-dof joint information.),\n 'wrist_image': Image(shape=(84, 84, 3), dtype=uint8, description=Wrist camera RGB observation.),\n }),\n 'reward': Scalar(shape=(), dtype=float32, description=Reward if provided, 1 on final step for demos.),\n }),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|---------------------------------|--------------|-------------|---------|----------------------------------------------------------------------------------------------------------------------------------------|\n| | FeaturesDict | | | |\n| episode_metadata | FeaturesDict | | | |\n| episode_metadata/file_path | Text | | string | Path to the original data file. |\n| steps | Dataset | | | |\n| steps/action | Tensor | (7,) | float32 | Robot action, consists of \\[3x ee relative pos, 3x ee relative rotation, 1x gripper action\\]. |\n| steps/action_mode | Tensor | (1,) | float32 | Type of interaction. -1: initial human demonstration. 1: intervention. 0: autonomuos robot execution (includes pre-intervention class) |\n| steps/discount | Scalar | | float32 | Discount if provided, default to 1. |\n| steps/intv_label | Tensor | (1,) | float32 | Same as action_modes, except 15 timesteps preceding intervention are labeled as -10. |\n| steps/is_first | Tensor | | bool | |\n| steps/is_last | Tensor | | bool | |\n| steps/is_terminal | Tensor | | bool | |\n| steps/language_embedding | Tensor | (512,) | float32 | Kona language embedding. See \u003chttps://tfhub.dev/google/universal-sentence-encoder-large/5\u003e |\n| steps/language_instruction | Text | | string | Language Instruction. |\n| steps/observation | FeaturesDict | | | |\n| steps/observation/image | Image | (84, 84, 3) | uint8 | Main camera RGB observation. |\n| steps/observation/state | Tensor | (8,) | float32 | Default robot state, consists of \\[7x robot joint state, 1x gripper state\\]. |\n| steps/observation/state_ee | Tensor | (16,) | float32 | End-effector state, represented as 4x4 homogeneous transformation matrix of ee pose. |\n| steps/observation/state_gripper | Tensor | (1,) | float32 | Robot gripper opening width. Ranges between \\~0 (closed) to \\~0.077 (open) |\n| steps/observation/state_joint | Tensor | (7,) | float32 | Robot 7-dof joint information. |\n| steps/observation/wrist_image | Image | (84, 84, 3) | uint8 | Wrist camera RGB observation. |\n| steps/reward | Scalar | | float32 | Reward if provided, 1 on final step for demos. |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `None`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n Not supported.\n\n- **Examples**\n ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @inproceedings{liu2022robot,\n title = {Robot Learning on the Job: Human-in-the-Loop Autonomy and Learning During Deployment},\n author = {Huihan Liu and Soroush Nasiriany and Lance Zhang and Zhiyao Bao and Yuke Zhu},\n booktitle = {Robotics: Science and Systems (RSS)},\n year = {2023}\n }"]]