berkeley_cable_routing
Stay organized with collections
Save and categorize content based on your preferences.
Routing cable into clamps on table top
Split |
Examples |
'test' |
165 |
'train' |
1,482 |
FeaturesDict({
'steps': Dataset({
'action': FeaturesDict({
'rotation_delta': Tensor(shape=(3,), dtype=float32, description=Angular velocity about the z axis.),
'terminate_episode': float32,
'world_vector': Tensor(shape=(3,), dtype=float32, description=Velocity in XYZ.),
}),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': FeaturesDict({
'image': Image(shape=(128, 128, 3), dtype=uint8),
'natural_language_embedding': Tensor(shape=(512,), dtype=float32),
'natural_language_instruction': string,
'robot_state': Tensor(shape=(7,), dtype=float32),
'top_image': Image(shape=(128, 128, 3), dtype=uint8),
'wrist225_image': Image(shape=(128, 128, 3), dtype=uint8),
'wrist45_image': Image(shape=(128, 128, 3), dtype=uint8),
}),
'reward': Scalar(shape=(), dtype=float32),
}),
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
steps |
Dataset |
|
|
|
steps/action |
FeaturesDict |
|
|
|
steps/action/rotation_delta |
Tensor |
(3,) |
float32 |
Angular velocity about the z axis. |
steps/action/terminate_episode |
Tensor |
|
float32 |
|
steps/action/world_vector |
Tensor |
(3,) |
float32 |
Velocity in XYZ. |
steps/is_first |
Tensor |
|
bool |
|
steps/is_last |
Tensor |
|
bool |
|
steps/is_terminal |
Tensor |
|
bool |
|
steps/observation |
FeaturesDict |
|
|
|
steps/observation/image |
Image |
(128, 128, 3) |
uint8 |
|
steps/observation/natural_language_embedding |
Tensor |
(512,) |
float32 |
|
steps/observation/natural_language_instruction |
Tensor |
|
string |
|
steps/observation/robot_state |
Tensor |
(7,) |
float32 |
|
steps/observation/top_image |
Image |
(128, 128, 3) |
uint8 |
|
steps/observation/wrist225_image |
Image |
(128, 128, 3) |
uint8 |
|
steps/observation/wrist45_image |
Image |
(128, 128, 3) |
uint8 |
|
steps/reward |
Scalar |
|
float32 |
|
@article{luo2023multistage,
author = {Jianlan Luo and Charles Xu and Xinyang Geng and Gilbert Feng and Kuan Fang and Liam Tan and Stefan Schaal and Sergey Levine},
title = {Multi-Stage Cable Routing through Hierarchical Imitation Learning},
journal = {arXiv pre-print},
year = {2023},
url = {https://arxiv.org/abs/2307.08927},
}
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-09-03 UTC.
[null,null,["Last updated 2024-09-03 UTC."],[],[],null,["# berkeley_cable_routing\n\n\u003cbr /\u003e\n\n- **Description**:\n\nRouting cable into clamps on table top\n\n- **Homepage** :\n \u003chttps://sites.google.com/view/cablerouting/home\u003e\n\n- **Source code** :\n [`tfds.robotics.rtx.BerkeleyCableRouting`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/robotics/rtx/rtx.py)\n\n- **Versions**:\n\n - **`0.1.0`** (default): Initial release.\n- **Download size** : `Unknown size`\n\n- **Dataset size** : `4.67 GiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n No\n\n- **Splits**:\n\n| Split | Examples |\n|-----------|----------|\n| `'test'` | 165 |\n| `'train'` | 1,482 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'steps': Dataset({\n 'action': FeaturesDict({\n 'rotation_delta': Tensor(shape=(3,), dtype=float32, description=Angular velocity about the z axis.),\n 'terminate_episode': float32,\n 'world_vector': Tensor(shape=(3,), dtype=float32, description=Velocity in XYZ.),\n }),\n 'is_first': bool,\n 'is_last': bool,\n 'is_terminal': bool,\n 'observation': FeaturesDict({\n 'image': Image(shape=(128, 128, 3), dtype=uint8),\n 'natural_language_embedding': Tensor(shape=(512,), dtype=float32),\n 'natural_language_instruction': string,\n 'robot_state': Tensor(shape=(7,), dtype=float32),\n 'top_image': Image(shape=(128, 128, 3), dtype=uint8),\n 'wrist225_image': Image(shape=(128, 128, 3), dtype=uint8),\n 'wrist45_image': Image(shape=(128, 128, 3), dtype=uint8),\n }),\n 'reward': Scalar(shape=(), dtype=float32),\n }),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|------------------------------------------------|--------------|---------------|---------|------------------------------------|\n| | FeaturesDict | | | |\n| steps | Dataset | | | |\n| steps/action | FeaturesDict | | | |\n| steps/action/rotation_delta | Tensor | (3,) | float32 | Angular velocity about the z axis. |\n| steps/action/terminate_episode | Tensor | | float32 | |\n| steps/action/world_vector | Tensor | (3,) | float32 | Velocity in XYZ. |\n| steps/is_first | Tensor | | bool | |\n| steps/is_last | Tensor | | bool | |\n| steps/is_terminal | Tensor | | bool | |\n| steps/observation | FeaturesDict | | | |\n| steps/observation/image | Image | (128, 128, 3) | uint8 | |\n| steps/observation/natural_language_embedding | Tensor | (512,) | float32 | |\n| steps/observation/natural_language_instruction | Tensor | | string | |\n| steps/observation/robot_state | Tensor | (7,) | float32 | |\n| steps/observation/top_image | Image | (128, 128, 3) | uint8 | |\n| steps/observation/wrist225_image | Image | (128, 128, 3) | uint8 | |\n| steps/observation/wrist45_image | Image | (128, 128, 3) | uint8 | |\n| steps/reward | Scalar | | float32 | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `None`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n Not supported.\n\n- **Examples**\n ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @article{luo2023multistage,\n author = {Jianlan Luo and Charles Xu and Xinyang Geng and Gilbert Feng and Kuan Fang and Liam Tan and Stefan Schaal and Sergey Levine},\n title = {Multi-Stage Cable Routing through Hierarchical Imitation Learning},\n journal = {arXiv pre-print},\n year = {2023},\n url = {https://arxiv.org/abs/2307.08927},\n }"]]