berkeley_gnm_recon
Stay organized with collections
Save and categorize content based on your preferences.
off-road navigation
Split |
Examples |
'train' |
11,834 |
FeaturesDict({
'episode_metadata': FeaturesDict({
'file_path': Text(shape=(), dtype=string),
}),
'steps': Dataset({
'action': Tensor(shape=(2,), dtype=float64, description=Robot action, consists of 2x position),
'action_angle': Tensor(shape=(3,), dtype=float64, description=Robot action, consists of 2x position, 1x yaw),
'discount': Scalar(shape=(), dtype=float64, description=Discount if provided, default to 1.),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'language_embedding': Tensor(shape=(512,), dtype=float32, description=Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5),
'language_instruction': Text(shape=(), dtype=string),
'observation': FeaturesDict({
'image': Image(shape=(120, 160, 3), dtype=uint8, description=Main camera RGB observation.),
'position': Tensor(shape=(2,), dtype=float64, description=Robot position),
'state': Tensor(shape=(3,), dtype=float64, description=Robot state, consists of [2x position, 1x yaw]),
'yaw': Tensor(shape=(1,), dtype=float64, description=Robot yaw),
}),
'reward': Scalar(shape=(), dtype=float64, description=Reward if provided, 1 on final step for demos.),
}),
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
episode_metadata |
FeaturesDict |
|
|
|
episode_metadata/file_path |
Text |
|
string |
Path to the original data file. |
steps |
Dataset |
|
|
|
steps/action |
Tensor |
(2,) |
float64 |
Robot action, consists of 2x position |
steps/action_angle |
Tensor |
(3,) |
float64 |
Robot action, consists of 2x position, 1x yaw |
steps/discount |
Scalar |
|
float64 |
Discount if provided, default to 1. |
steps/is_first |
Tensor |
|
bool |
|
steps/is_last |
Tensor |
|
bool |
|
steps/is_terminal |
Tensor |
|
bool |
|
steps/language_embedding |
Tensor |
(512,) |
float32 |
Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5 |
steps/language_instruction |
Text |
|
string |
Language Instruction. |
steps/observation |
FeaturesDict |
|
|
|
steps/observation/image |
Image |
(120, 160, 3) |
uint8 |
Main camera RGB observation. |
steps/observation/position |
Tensor |
(2,) |
float64 |
Robot position |
steps/observation/state |
Tensor |
(3,) |
float64 |
Robot state, consists of [2x position, 1x yaw] |
steps/observation/yaw |
Tensor |
(1,) |
float64 |
Robot yaw |
steps/reward |
Scalar |
|
float64 |
Reward if provided, 1 on final step for demos. |
@inproceedings{
shah2021rapid,
title={ {Rapid Exploration for Open-World Navigation with Latent Goal Models} },
author={Dhruv Shah and Benjamin Eysenbach and Nicholas Rhinehart and Sergey Levine},
booktitle={5th Annual Conference on Robot Learning },
year={2021},
url={https://openreview.net/forum?id=d_SWJhyKfVw}
}
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-09-03 UTC.
[null,null,["Last updated 2024-09-03 UTC."],[],[],null,["# berkeley_gnm_recon\n\n\u003cbr /\u003e\n\n- **Description**:\n\noff-road navigation\n\n- **Homepage** :\n \u003chttps://sites.google.com/view/recon-robot\u003e\n\n- **Source code** :\n [`tfds.robotics.rtx.BerkeleyGnmRecon`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/robotics/rtx/rtx.py)\n\n- **Versions**:\n\n - **`0.1.0`** (default): Initial release.\n- **Download size** : `Unknown size`\n\n- **Dataset size** : `18.73 GiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n No\n\n- **Splits**:\n\n| Split | Examples |\n|-----------|----------|\n| `'train'` | 11,834 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'episode_metadata': FeaturesDict({\n 'file_path': Text(shape=(), dtype=string),\n }),\n 'steps': Dataset({\n 'action': Tensor(shape=(2,), dtype=float64, description=Robot action, consists of 2x position),\n 'action_angle': Tensor(shape=(3,), dtype=float64, description=Robot action, consists of 2x position, 1x yaw),\n 'discount': Scalar(shape=(), dtype=float64, description=Discount if provided, default to 1.),\n 'is_first': bool,\n 'is_last': bool,\n 'is_terminal': bool,\n 'language_embedding': Tensor(shape=(512,), dtype=float32, description=Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5),\n 'language_instruction': Text(shape=(), dtype=string),\n 'observation': FeaturesDict({\n 'image': Image(shape=(120, 160, 3), dtype=uint8, description=Main camera RGB observation.),\n 'position': Tensor(shape=(2,), dtype=float64, description=Robot position),\n 'state': Tensor(shape=(3,), dtype=float64, description=Robot state, consists of [2x position, 1x yaw]),\n 'yaw': Tensor(shape=(1,), dtype=float64, description=Robot yaw),\n }),\n 'reward': Scalar(shape=(), dtype=float64, description=Reward if provided, 1 on final step for demos.),\n }),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|----------------------------|--------------|---------------|---------|--------------------------------------------------------------------------------------------|\n| | FeaturesDict | | | |\n| episode_metadata | FeaturesDict | | | |\n| episode_metadata/file_path | Text | | string | Path to the original data file. |\n| steps | Dataset | | | |\n| steps/action | Tensor | (2,) | float64 | Robot action, consists of 2x position |\n| steps/action_angle | Tensor | (3,) | float64 | Robot action, consists of 2x position, 1x yaw |\n| steps/discount | Scalar | | float64 | Discount if provided, default to 1. |\n| steps/is_first | Tensor | | bool | |\n| steps/is_last | Tensor | | bool | |\n| steps/is_terminal | Tensor | | bool | |\n| steps/language_embedding | Tensor | (512,) | float32 | Kona language embedding. See \u003chttps://tfhub.dev/google/universal-sentence-encoder-large/5\u003e |\n| steps/language_instruction | Text | | string | Language Instruction. |\n| steps/observation | FeaturesDict | | | |\n| steps/observation/image | Image | (120, 160, 3) | uint8 | Main camera RGB observation. |\n| steps/observation/position | Tensor | (2,) | float64 | Robot position |\n| steps/observation/state | Tensor | (3,) | float64 | Robot state, consists of \\[2x position, 1x yaw\\] |\n| steps/observation/yaw | Tensor | (1,) | float64 | Robot yaw |\n| steps/reward | Scalar | | float64 | Reward if provided, 1 on final step for demos. |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `None`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n Not supported.\n\n- **Examples**\n ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @inproceedings{\n shah2021rapid,\n title={ {Rapid Exploration for Open-World Navigation with Latent Goal Models} },\n author={Dhruv Shah and Benjamin Eysenbach and Nicholas Rhinehart and Sergey Levine},\n booktitle={5th Annual Conference on Robot Learning },\n year={2021},\n url={https://openreview.net/forum?id=d_SWJhyKfVw}\n }"]]