berkeley_rpt_converted_externally_to_rlds

  • বর্ণনা :

ফ্রাঙ্কা ট্যাবলেটপ বাছাই করার স্থানের কার্য সম্পাদন করছে

বিভক্ত উদাহরণ
'train' 908
  • বৈশিষ্ট্য গঠন :
FeaturesDict({
    'episode_metadata': FeaturesDict({
        'file_path': Text(shape=(), dtype=string),
    }),
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=float32, description=Robot action, consists of [7 delta joint pos,1x gripper binary state].),
        'discount': Scalar(shape=(), dtype=float32, description=Discount if provided, default to 1.),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'language_embedding': Tensor(shape=(512,), dtype=float32, description=Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5),
        'language_instruction': Text(shape=(), dtype=string),
        'observation': FeaturesDict({
            'gripper': Scalar(shape=(), dtype=bool, description=Binary gripper state (1 - closed, 0 - open)),
            'hand_image': Image(shape=(480, 640, 3), dtype=uint8, description=Hand camera RGB observation.),
            'joint_pos': Tensor(shape=(7,), dtype=float32, description=xArm joint positions (7 DoF).),
        }),
        'reward': Scalar(shape=(), dtype=float32, description=Reward if provided, 1 on final step for demos.),
    }),
})
  • বৈশিষ্ট্য ডকুমেন্টেশন :
বৈশিষ্ট্য ক্লাস আকৃতি ডিটাইপ বর্ণনা
ফিচারসডিক্ট
episode_metadata ফিচারসডিক্ট
episode_metadata/file_path পাঠ্য স্ট্রিং মূল ডেটা ফাইলের পথ।
পদক্ষেপ ডেটাসেট
পদক্ষেপ/ক্রিয়া টেনসর (8,) float32 রোবট অ্যাকশন, [7 ডেল্টা জয়েন্ট পোস, 1x গ্রিপার বাইনারি স্টেট] নিয়ে গঠিত।
পদক্ষেপ/ছাড় স্কেলার float32 ডিসকাউন্ট দেওয়া হলে, ডিফল্ট 1.
steps/is_first টেনসর bool
ধাপ/শেষ_শেষ টেনসর bool
steps/is_terminal টেনসর bool
পদক্ষেপ/ভাষা_এম্বেডিং টেনসর (512,) float32 কোন ভাষা এম্বেডিং. https://tfhub.dev/google/universal-sentence-encoder-large/5 দেখুন
পদক্ষেপ/ভাষা_নির্দেশ পাঠ্য স্ট্রিং ভাষার নির্দেশনা।
পদক্ষেপ/পর্যবেক্ষণ ফিচারসডিক্ট
পদক্ষেপ/পর্যবেক্ষণ/গ্রিপার স্কেলার bool বাইনারি গ্রিপার স্টেট (1 - বন্ধ, 0 ​​- খোলা)
পদক্ষেপ/পর্যবেক্ষণ/হ্যান্ড_ইমেজ ছবি (480, 640, 3) uint8 হ্যান্ড ক্যামেরা আরজিবি পর্যবেক্ষণ।
পদক্ষেপ/পর্যবেক্ষণ/জয়েন্ট_পোস টেনসর (৭,) float32 xArm জয়েন্ট পজিশন (7 DoF)।
পদক্ষেপ/পুরস্কার স্কেলার float32 প্রদান করা হলে পুরস্কার, ডেমোর জন্য চূড়ান্ত ধাপে 1।
  • উদ্ধৃতি :
@article{Radosavovic2023,
  title={Robot Learning with Sensorimotor Pre-training},
  author={Ilija Radosavovic and Baifeng Shi and Letian Fu and Ken Goldberg and Trevor Darrell and Jitendra Malik},
  year={2023},
  journal={arXiv:2306.10007}
}