cassava
Stay organized with collections
Save and categorize content based on your preferences.
Cassava consists of leaf images for the cassava plant depicting healthy and four
(4) disease conditions; Cassava Mosaic Disease (CMD), Cassava Bacterial Blight
(CBB), Cassava Greem Mite (CGM) and Cassava Brown Streak Disease (CBSD). Dataset
consists of a total of 9430 labelled images. The 9430 labelled images are split
into a training set (5656), a test set(1885) and a validation set (1889). The
number of images per class are unbalanced with the two disease classes CMD and
CBSD having 72% of the images.
Split |
Examples |
'test' |
1,885 |
'train' |
5,656 |
'validation' |
1,889 |
FeaturesDict({
'image': Image(shape=(None, None, 3), dtype=uint8),
'image/filename': Text(shape=(), dtype=string),
'label': ClassLabel(shape=(), dtype=int64, num_classes=5),
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
image |
Image |
(None, None, 3) |
uint8 |
|
image/filename |
Text |
|
string |
|
label |
ClassLabel |
|
int64 |
|

@misc{mwebaze2019icassava,
title={iCassava 2019Fine-Grained Visual Categorization Challenge},
author={Ernest Mwebaze and Timnit Gebru and Andrea Frome and Solomon Nsumba and Jeremy Tusubira},
year={2019},
eprint={1908.02900},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-06-01 UTC.
[null,null,["Last updated 2024-06-01 UTC."],[],[],null,["# cassava\n\n\u003cbr /\u003e\n\n- **Description**:\n\nCassava consists of leaf images for the cassava plant depicting healthy and four\n(4) disease conditions; Cassava Mosaic Disease (CMD), Cassava Bacterial Blight\n(CBB), Cassava Greem Mite (CGM) and Cassava Brown Streak Disease (CBSD). Dataset\nconsists of a total of 9430 labelled images. The 9430 labelled images are split\ninto a training set (5656), a test set(1885) and a validation set (1889). The\nnumber of images per class are unbalanced with the two disease classes CMD and\nCBSD having 72% of the images.\n\n- **Homepage** :\n \u003chttps://www.kaggle.com/c/cassava-disease/overview\u003e\n\n- **Source code** :\n [`tfds.image_classification.Cassava`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/image_classification/cassava.py)\n\n- **Versions**:\n\n - **`0.1.0`** (default): No release notes.\n- **Download size** : `1.26 GiB`\n\n- **Dataset size** : `1.26 GiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n No\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'test'` | 1,885 |\n| `'train'` | 5,656 |\n| `'validation'` | 1,889 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'image': Image(shape=(None, None, 3), dtype=uint8),\n 'image/filename': Text(shape=(), dtype=string),\n 'label': ClassLabel(shape=(), dtype=int64, num_classes=5),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|----------------|--------------|-----------------|--------|-------------|\n| | FeaturesDict | | | |\n| image | Image | (None, None, 3) | uint8 | |\n| image/filename | Text | | string | |\n| label | ClassLabel | | int64 | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `('image', 'label')`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @misc{mwebaze2019icassava,\n title={iCassava 2019Fine-Grained Visual Categorization Challenge},\n author={Ernest Mwebaze and Timnit Gebru and Andrea Frome and Solomon Nsumba and Jeremy Tusubira},\n year={2019},\n eprint={1908.02900},\n archivePrefix={arXiv},\n primaryClass={cs.CV}\n }"]]