cifar10_h
Stay organized with collections
Save and categorize content based on your preferences.
A re-labeled version of CIFAR-10's test set with soft-labels coming from real
human annotators. For every pair (image, label) in the original CIFAR-10 test
set, it provides several additional labels given by real human annotators as
well as the average soft-label. The training set is identical to the one of the
original dataset.
Split |
Examples |
'test' |
10,000 |
'train' |
50,000 |
FeaturesDict({
'annotator_ids': Sequence(Scalar(shape=(), dtype=int32)),
'human_labels': Sequence(ClassLabel(shape=(), dtype=int64, num_classes=10)),
'id': Text(shape=(), dtype=string),
'image': Image(shape=(32, 32, 3), dtype=uint8),
'label': ClassLabel(shape=(), dtype=int64, num_classes=10),
'reaction_times': Sequence(Scalar(shape=(), dtype=float32)),
'soft_label': Tensor(shape=(10,), dtype=float32),
'trial_indices': Sequence(Scalar(shape=(), dtype=int32)),
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
annotator_ids |
Sequence(Scalar) |
(None,) |
int32 |
|
human_labels |
Sequence(ClassLabel) |
(None,) |
int64 |
|
id |
Text |
|
string |
|
image |
Image |
(32, 32, 3) |
uint8 |
|
label |
ClassLabel |
|
int64 |
|
reaction_times |
Sequence(Scalar) |
(None,) |
float32 |
|
soft_label |
Tensor |
(10,) |
float32 |
|
trial_indices |
Sequence(Scalar) |
(None,) |
int32 |
|

@inproceedings{wei2022learning,
title={Human uncertainty makes classification more robust},
author={Joshua C. Peterson and Ruairidh M. Battleday and Thomas L. Griffiths
and Olga Russakovsky},
booktitle={IEEE International Conference on Computer Vision and Pattern
Recognition (CVPR)},
year={2019}
}
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2023-09-09 UTC.
[null,null,["Last updated 2023-09-09 UTC."],[],[],null,["# cifar10_h\n\n\u003cbr /\u003e\n\n- **Description**:\n\nA re-labeled version of CIFAR-10's test set with soft-labels coming from real\nhuman annotators. For every pair (image, label) in the original CIFAR-10 test\nset, it provides several additional labels given by real human annotators as\nwell as the average soft-label. The training set is identical to the one of the\noriginal dataset.\n\n- **Homepage** :\n \u003chttps://github.com/jcpeterson/cifar-10h\u003e\n\n- **Source code** :\n [`tfds.image_classification.cifar10_h.Cifar10H`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/image_classification/cifar10_h/cifar10_h.py)\n\n- **Versions**:\n\n - **`1.0.0`** (default): Initial release.\n- **Download size** : `172.92 MiB`\n\n- **Dataset size** : `144.85 MiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n Yes\n\n- **Splits**:\n\n| Split | Examples |\n|-----------|----------|\n| `'test'` | 10,000 |\n| `'train'` | 50,000 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'annotator_ids': Sequence(Scalar(shape=(), dtype=int32)),\n 'human_labels': Sequence(ClassLabel(shape=(), dtype=int64, num_classes=10)),\n 'id': Text(shape=(), dtype=string),\n 'image': Image(shape=(32, 32, 3), dtype=uint8),\n 'label': ClassLabel(shape=(), dtype=int64, num_classes=10),\n 'reaction_times': Sequence(Scalar(shape=(), dtype=float32)),\n 'soft_label': Tensor(shape=(10,), dtype=float32),\n 'trial_indices': Sequence(Scalar(shape=(), dtype=int32)),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|----------------|----------------------|-------------|---------|-------------|\n| | FeaturesDict | | | |\n| annotator_ids | Sequence(Scalar) | (None,) | int32 | |\n| human_labels | Sequence(ClassLabel) | (None,) | int64 | |\n| id | Text | | string | |\n| image | Image | (32, 32, 3) | uint8 | |\n| label | ClassLabel | | int64 | |\n| reaction_times | Sequence(Scalar) | (None,) | float32 | |\n| soft_label | Tensor | (10,) | float32 | |\n| trial_indices | Sequence(Scalar) | (None,) | int32 | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `None`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @inproceedings{wei2022learning,\n title={Human uncertainty makes classification more robust},\n author={Joshua C. Peterson and Ruairidh M. Battleday and Thomas L. Griffiths\n and Olga Russakovsky},\n booktitle={IEEE International Conference on Computer Vision and Pattern\n Recognition (CVPR)},\n year={2019}\n }"]]