- Keterangan :
D4RL adalah tolok ukur sumber terbuka untuk pembelajaran penguatan offline. Ini menyediakan lingkungan dan kumpulan data standar untuk pelatihan dan algoritma benchmarking.
Kumpulan data mengikuti format RLDS untuk mewakili langkah dan episode.
- Deskripsi konfigurasi : Lihat detail selengkapnya tentang tugas dan versinya di https://github.com/rail-berkeley/d4rl/wiki/Tasks#adroit 
- Kode sumber : - tfds.d4rl.d4rl_adroit_door.D4rlAdroitDoor
- Versi : -  1.0.0: Rilis awal.
-  1.1.0(default): Ditambahkan is_last.
 
-  
- Kunci yang diawasi (Lihat dokumen - as_supervised):- None
- Gambar ( tfds.show_examples ): Tidak didukung. 
- Kutipan : 
@misc{fu2020d4rl,
    title={D4RL: Datasets for Deep Data-Driven Reinforcement Learning},
    author={Justin Fu and Aviral Kumar and Ofir Nachum and George Tucker and Sergey Levine},
    year={2020},
    eprint={2004.07219},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
d4rl_adroit_door/v0-human (konfigurasi default)
- Ukuran unduhan : - 2.97 MiB
- Ukuran kumpulan data : - 3.36 MiB
- Cache otomatis ( dokumentasi ): Ya 
- Perpecahan : 
| Membelah | Contoh | 
|---|---|
| 'train' | 50 | 
- Struktur fitur :
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(28,), dtype=float32),
        'discount': float32,
        'infos': FeaturesDict({
            'qpos': Tensor(shape=(30,), dtype=float32),
            'qvel': Tensor(shape=(30,), dtype=float32),
        }),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(39,), dtype=float32),
        'reward': float32,
    }),
})
- Dokumentasi fitur :
| Fitur | Kelas | Membentuk | Tipe D | Keterangan | 
|---|---|---|---|---|
| FiturDict | ||||
| Langkah | Himpunan data | |||
| langkah/tindakan | Tensor | (28,) | float32 | |
| langkah/diskon | Tensor | float32 | ||
| langkah/info | FiturDict | |||
| langkah/info/qpos | Tensor | (30,) | float32 | |
| langkah/info/qvel | Tensor | (30,) | float32 | |
| langkah/adalah_pertama | Tensor | bodoh | ||
| langkah/adalah_terakhir | Tensor | bodoh | ||
| langkah/is_terminal | Tensor | bodoh | ||
| langkah/pengamatan | Tensor | (39,) | float32 | |
| langkah/hadiah | Tensor | float32 | 
- Contoh ( tfds.as_dataframe ):
d4rl_adroit_door/v0-kloning
- Ukuran unduhan : - 602.42 MiB
- Ukuran kumpulan data : - 497.47 MiB
- Cache otomatis ( dokumentasi ): Tidak 
- Perpecahan : 
| Membelah | Contoh | 
|---|---|
| 'train' | 6.214 | 
- Struktur fitur :
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(28,), dtype=float32),
        'discount': float64,
        'infos': FeaturesDict({
            'qpos': Tensor(shape=(30,), dtype=float64),
            'qvel': Tensor(shape=(30,), dtype=float64),
        }),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(39,), dtype=float64),
        'reward': float64,
    }),
})
- Dokumentasi fitur :
| Fitur | Kelas | Membentuk | Tipe D | Keterangan | 
|---|---|---|---|---|
| FiturDict | ||||
| Langkah | Himpunan data | |||
| langkah/tindakan | Tensor | (28,) | float32 | |
| langkah/diskon | Tensor | float64 | ||
| langkah/info | FiturDict | |||
| langkah/info/qpos | Tensor | (30,) | float64 | |
| langkah/info/qvel | Tensor | (30,) | float64 | |
| langkah/adalah_pertama | Tensor | bodoh | ||
| langkah/adalah_terakhir | Tensor | bodoh | ||
| langkah/is_terminal | Tensor | bodoh | ||
| langkah/pengamatan | Tensor | (39,) | float64 | |
| langkah/hadiah | Tensor | float64 | 
- Contoh ( tfds.as_dataframe ):
d4rl_adroit_door/v0-expert
- Ukuran unduhan : - 511.05 MiB
- Ukuran kumpulan data : - 710.30 MiB
- Cache otomatis ( dokumentasi ): Tidak 
- Perpecahan : 
| Membelah | Contoh | 
|---|---|
| 'train' | 5.000 | 
- Struktur fitur :
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(28,), dtype=float32),
        'discount': float32,
        'infos': FeaturesDict({
            'action_logstd': Tensor(shape=(28,), dtype=float32),
            'action_mean': Tensor(shape=(28,), dtype=float32),
            'qpos': Tensor(shape=(30,), dtype=float32),
            'qvel': Tensor(shape=(30,), dtype=float32),
        }),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(39,), dtype=float32),
        'reward': float32,
    }),
})
- Dokumentasi fitur :
| Fitur | Kelas | Membentuk | Tipe D | Keterangan | 
|---|---|---|---|---|
| FiturDict | ||||
| Langkah | Himpunan data | |||
| langkah/tindakan | Tensor | (28,) | float32 | |
| langkah/diskon | Tensor | float32 | ||
| langkah/info | FiturDict | |||
| langkah/info/action_logstd | Tensor | (28,) | float32 | |
| langkah/info/action_mean | Tensor | (28,) | float32 | |
| langkah/info/qpos | Tensor | (30,) | float32 | |
| langkah/info/qvel | Tensor | (30,) | float32 | |
| langkah/adalah_pertama | Tensor | bodoh | ||
| langkah/adalah_terakhir | Tensor | bodoh | ||
| langkah/is_terminal | Tensor | bodoh | ||
| langkah/pengamatan | Tensor | (39,) | float32 | |
| langkah/hadiah | Tensor | float32 | 
- Contoh ( tfds.as_dataframe ):
d4rl_adroit_door/v1-human
- Ukuran unduhan : - 2.98 MiB
- Ukuran kumpulan data : - 3.42 MiB
- Cache otomatis ( dokumentasi ): Ya 
- Perpecahan : 
| Membelah | Contoh | 
|---|---|
| 'train' | 25 | 
- Struktur fitur :
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(28,), dtype=float32),
        'discount': float32,
        'infos': FeaturesDict({
            'door_body_pos': Tensor(shape=(3,), dtype=float32),
            'qpos': Tensor(shape=(30,), dtype=float32),
            'qvel': Tensor(shape=(30,), dtype=float32),
        }),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(39,), dtype=float32),
        'reward': float32,
    }),
})
- Dokumentasi fitur :
| Fitur | Kelas | Membentuk | Tipe D | Keterangan | 
|---|---|---|---|---|
| FiturDict | ||||
| Langkah | Himpunan data | |||
| langkah/tindakan | Tensor | (28,) | float32 | |
| langkah/diskon | Tensor | float32 | ||
| langkah/info | FiturDict | |||
| langkah/infos/door_body_pos | Tensor | (3,) | float32 | |
| langkah/info/qpos | Tensor | (30,) | float32 | |
| langkah/info/qvel | Tensor | (30,) | float32 | |
| langkah/adalah_pertama | Tensor | bodoh | ||
| langkah/adalah_terakhir | Tensor | bodoh | ||
| langkah/is_terminal | Tensor | bodoh | ||
| langkah/pengamatan | Tensor | (39,) | float32 | |
| langkah/hadiah | Tensor | float32 | 
- Contoh ( tfds.as_dataframe ):
d4rl_adroit_door/v1-kloning
- Ukuran unduhan : - 280.72 MiB
- Ukuran kumpulan data : - 1.85 GiB
- Cache otomatis ( dokumentasi ): Tidak 
- Perpecahan : 
| Membelah | Contoh | 
|---|---|
| 'train' | 4.358 | 
- Struktur fitur :
FeaturesDict({
    'algorithm': string,
    'policy': FeaturesDict({
        'fc0': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=float32),
            'weight': Tensor(shape=(39, 256), dtype=float32),
        }),
        'fc1': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=float32),
            'weight': Tensor(shape=(256, 256), dtype=float32),
        }),
        'last_fc': FeaturesDict({
            'bias': Tensor(shape=(28,), dtype=float32),
            'weight': Tensor(shape=(256, 28), dtype=float32),
        }),
        'nonlinearity': string,
        'output_distribution': string,
    }),
    'steps': Dataset({
        'action': Tensor(shape=(28,), dtype=float32),
        'discount': float32,
        'infos': FeaturesDict({
            'door_body_pos': Tensor(shape=(3,), dtype=float32),
            'qpos': Tensor(shape=(30,), dtype=float32),
            'qvel': Tensor(shape=(30,), dtype=float32),
        }),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(39,), dtype=float32),
        'reward': float32,
    }),
})
- Dokumentasi fitur :
| Fitur | Kelas | Membentuk | Tipe D | Keterangan | 
|---|---|---|---|---|
| FiturDict | ||||
| algoritma | Tensor | rangkaian | ||
| kebijakan | FiturDict | |||
| kebijakan/fc0 | FiturDict | |||
| kebijakan/fc0/bias | Tensor | (256,) | float32 | |
| kebijakan/fc0/bobot | Tensor | (39, 256) | float32 | |
| kebijakan/fc1 | FiturDict | |||
| kebijakan/fc1/bias | Tensor | (256,) | float32 | |
| kebijakan/fc1/bobot | Tensor | (256, 256) | float32 | |
| kebijakan/last_fc | FiturDict | |||
| kebijakan/last_fc/bias | Tensor | (28,) | float32 | |
| policy/last_fc/weight | Tensor | (256, 28) | float32 | |
| kebijakan/nonlinier | Tensor | rangkaian | ||
| kebijakan/output_distribusi | Tensor | rangkaian | ||
| Langkah | Himpunan data | |||
| langkah/tindakan | Tensor | (28,) | float32 | |
| langkah/diskon | Tensor | float32 | ||
| langkah/info | FiturDict | |||
| langkah/infos/door_body_pos | Tensor | (3,) | float32 | |
| langkah/info/qpos | Tensor | (30,) | float32 | |
| langkah/info/qvel | Tensor | (30,) | float32 | |
| langkah/adalah_pertama | Tensor | bodoh | ||
| langkah/adalah_terakhir | Tensor | bodoh | ||
| langkah/is_terminal | Tensor | bodoh | ||
| langkah/pengamatan | Tensor | (39,) | float32 | |
| langkah/hadiah | Tensor | float32 | 
- Contoh ( tfds.as_dataframe ):
d4rl_adroit_door/v1-expert
- Ukuran unduhan : - 511.22 MiB
- Ukuran kumpulan data : - 803.48 MiB
- Cache otomatis ( dokumentasi ): Tidak 
- Perpecahan : 
| Membelah | Contoh | 
|---|---|
| 'train' | 5.000 | 
- Struktur fitur :
FeaturesDict({
    'algorithm': string,
    'policy': FeaturesDict({
        'fc0': FeaturesDict({
            'bias': Tensor(shape=(32,), dtype=float32),
            'weight': Tensor(shape=(32, 39), dtype=float32),
        }),
        'fc1': FeaturesDict({
            'bias': Tensor(shape=(32,), dtype=float32),
            'weight': Tensor(shape=(32, 32), dtype=float32),
        }),
        'last_fc': FeaturesDict({
            'bias': Tensor(shape=(28,), dtype=float32),
            'weight': Tensor(shape=(28, 32), dtype=float32),
        }),
        'last_fc_log_std': FeaturesDict({
            'bias': Tensor(shape=(28,), dtype=float32),
            'weight': Tensor(shape=(28, 32), dtype=float32),
        }),
        'nonlinearity': string,
        'output_distribution': string,
    }),
    'steps': Dataset({
        'action': Tensor(shape=(28,), dtype=float32),
        'discount': float32,
        'infos': FeaturesDict({
            'action_log_std': Tensor(shape=(28,), dtype=float32),
            'action_mean': Tensor(shape=(28,), dtype=float32),
            'door_body_pos': Tensor(shape=(3,), dtype=float32),
            'qpos': Tensor(shape=(30,), dtype=float32),
            'qvel': Tensor(shape=(30,), dtype=float32),
        }),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(39,), dtype=float32),
        'reward': float32,
    }),
})
- Dokumentasi fitur :
| Fitur | Kelas | Membentuk | Tipe D | Keterangan | 
|---|---|---|---|---|
| FiturDict | ||||
| algoritma | Tensor | rangkaian | ||
| kebijakan | FiturDict | |||
| kebijakan/fc0 | FiturDict | |||
| kebijakan/fc0/bias | Tensor | (32,) | float32 | |
| kebijakan/fc0/bobot | Tensor | (32, 39) | float32 | |
| kebijakan/fc1 | FiturDict | |||
| kebijakan/fc1/bias | Tensor | (32,) | float32 | |
| kebijakan/fc1/bobot | Tensor | (32, 32) | float32 | |
| kebijakan/last_fc | FiturDict | |||
| kebijakan/last_fc/bias | Tensor | (28,) | float32 | |
| policy/last_fc/weight | Tensor | (28, 32) | float32 | |
| kebijakan/last_fc_log_std | FiturDict | |||
| kebijakan/last_fc_log_std/bias | Tensor | (28,) | float32 | |
| policy/last_fc_log_std/weight | Tensor | (28, 32) | float32 | |
| kebijakan/nonlinier | Tensor | rangkaian | ||
| kebijakan/output_distribusi | Tensor | rangkaian | ||
| Langkah | Himpunan data | |||
| langkah/tindakan | Tensor | (28,) | float32 | |
| langkah/diskon | Tensor | float32 | ||
| langkah/info | FiturDict | |||
| langkah/info/action_log_std | Tensor | (28,) | float32 | |
| langkah/info/action_mean | Tensor | (28,) | float32 | |
| langkah/infos/door_body_pos | Tensor | (3,) | float32 | |
| langkah/info/qpos | Tensor | (30,) | float32 | |
| langkah/info/qvel | Tensor | (30,) | float32 | |
| langkah/adalah_pertama | Tensor | bodoh | ||
| langkah/adalah_terakhir | Tensor | bodoh | ||
| langkah/is_terminal | Tensor | bodoh | ||
| langkah/pengamatan | Tensor | (39,) | float32 | |
| langkah/hadiah | Tensor | float32 | 
- Contoh ( tfds.as_dataframe ):