- Description:
D4RL is an open-source benchmark for offline reinforcement learning. It provides standardized environments and datasets for training and benchmarking algorithms.
The datasets follow the RLDS format to represent steps and episodes.
Source code:
tfds.d4rl.d4rl_adroit_pen.D4rlAdroitPenVersions:
1.0.0: Initial release.1.1.0(default): Added is_last.
Supervised keys (See
as_superviseddoc):NoneFigure (tfds.show_examples): Not supported.
Citation:
@misc{fu2020d4rl,
title={D4RL: Datasets for Deep Data-Driven Reinforcement Learning},
author={Justin Fu and Aviral Kumar and Ofir Nachum and George Tucker and Sergey Levine},
year={2020},
eprint={2004.07219},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
d4rl_adroit_pen/v0-human (default config)
Config description: See more details about the task and its versions in https://github.com/rail-berkeley/d4rl/wiki/Tasks#adroit
Download size:
1.94 MiBDataset size:
2.52 MiBAuto-cached (documentation): Yes
Splits:
| Split | Examples |
|---|---|
'train' |
50 |
- Feature structure:
FeaturesDict({
'steps': Dataset({
'action': Tensor(shape=(24,), dtype=float32),
'discount': float32,
'infos': FeaturesDict({
'qpos': Tensor(shape=(30,), dtype=float32),
'qvel': Tensor(shape=(30,), dtype=float32),
}),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': Tensor(shape=(45,), dtype=float32),
'reward': float32,
}),
})
- Feature documentation:
| Feature | Class | Shape | Dtype | Description |
|---|---|---|---|---|
| FeaturesDict | ||||
| steps | Dataset | |||
| steps/action | Tensor | (24,) | float32 | |
| steps/discount | Tensor | float32 | ||
| steps/infos | FeaturesDict | |||
| steps/infos/qpos | Tensor | (30,) | float32 | |
| steps/infos/qvel | Tensor | (30,) | float32 | |
| steps/is_first | Tensor | bool | ||
| steps/is_last | Tensor | bool | ||
| steps/is_terminal | Tensor | bool | ||
| steps/observation | Tensor | (45,) | float32 | |
| steps/reward | Tensor | float32 |
- Examples (tfds.as_dataframe):
d4rl_adroit_pen/v0-cloned
Config description: See more details about the task and its versions in https://github.com/rail-berkeley/d4rl/wiki/Tasks#adroit
Download size:
292.85 MiBDataset size:
252.55 MiBAuto-cached (documentation): No
Splits:
| Split | Examples |
|---|---|
'train' |
5,023 |
- Feature structure:
FeaturesDict({
'steps': Dataset({
'action': Tensor(shape=(24,), dtype=float32),
'discount': float64,
'infos': FeaturesDict({
'qpos': Tensor(shape=(30,), dtype=float64),
'qvel': Tensor(shape=(30,), dtype=float64),
}),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': Tensor(shape=(45,), dtype=float64),
'reward': float64,
}),
})
- Feature documentation:
| Feature | Class | Shape | Dtype | Description |
|---|---|---|---|---|
| FeaturesDict | ||||
| steps | Dataset | |||
| steps/action | Tensor | (24,) | float32 | |
| steps/discount | Tensor | float64 | ||
| steps/infos | FeaturesDict | |||
| steps/infos/qpos | Tensor | (30,) | float64 | |
| steps/infos/qvel | Tensor | (30,) | float64 | |
| steps/is_first | Tensor | bool | ||
| steps/is_last | Tensor | bool | ||
| steps/is_terminal | Tensor | bool | ||
| steps/observation | Tensor | (45,) | float64 | |
| steps/reward | Tensor | float64 |
- Examples (tfds.as_dataframe):
d4rl_adroit_pen/v0-expert
Config description: See more details about the task and its versions in https://github.com/rail-berkeley/d4rl/wiki/Tasks#adroit
Download size:
250.13 MiBDataset size:
344.41 MiBAuto-cached (documentation): No
Splits:
| Split | Examples |
|---|---|
'train' |
5,000 |
- Feature structure:
FeaturesDict({
'steps': Dataset({
'action': Tensor(shape=(24,), dtype=float32),
'discount': float32,
'infos': FeaturesDict({
'action_logstd': Tensor(shape=(24,), dtype=float32),
'action_mean': Tensor(shape=(24,), dtype=float32),
'qpos': Tensor(shape=(30,), dtype=float32),
'qvel': Tensor(shape=(30,), dtype=float32),
}),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': Tensor(shape=(45,), dtype=float32),
'reward': float32,
}),
})
- Feature documentation:
| Feature | Class | Shape | Dtype | Description |
|---|---|---|---|---|
| FeaturesDict | ||||
| steps | Dataset | |||
| steps/action | Tensor | (24,) | float32 | |
| steps/discount | Tensor | float32 | ||
| steps/infos | FeaturesDict | |||
| steps/infos/action_logstd | Tensor | (24,) | float32 | |
| steps/infos/action_mean | Tensor | (24,) | float32 | |
| steps/infos/qpos | Tensor | (30,) | float32 | |
| steps/infos/qvel | Tensor | (30,) | float32 | |
| steps/is_first | Tensor | bool | ||
| steps/is_last | Tensor | bool | ||
| steps/is_terminal | Tensor | bool | ||
| steps/observation | Tensor | (45,) | float32 | |
| steps/reward | Tensor | float32 |
- Examples (tfds.as_dataframe):
d4rl_adroit_pen/v1-human
Config description: See more details about the task and its versions in https://github.com/rail-berkeley/d4rl/wiki/Tasks#adroit
Download size:
1.95 MiBDataset size:
2.60 MiBAuto-cached (documentation): Yes
Splits:
| Split | Examples |
|---|---|
'train' |
25 |
- Feature structure:
FeaturesDict({
'steps': Dataset({
'action': Tensor(shape=(24,), dtype=float32),
'discount': float32,
'infos': FeaturesDict({
'desired_orien': Tensor(shape=(4,), dtype=float32),
'qpos': Tensor(shape=(30,), dtype=float32),
'qvel': Tensor(shape=(30,), dtype=float32),
}),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': Tensor(shape=(45,), dtype=float32),
'reward': float32,
}),
})
- Feature documentation:
| Feature | Class | Shape | Dtype | Description |
|---|---|---|---|---|
| FeaturesDict | ||||
| steps | Dataset | |||
| steps/action | Tensor | (24,) | float32 | |
| steps/discount | Tensor | float32 | ||
| steps/infos | FeaturesDict | |||
| steps/infos/desired_orien | Tensor | (4,) | float32 | |
| steps/infos/qpos | Tensor | (30,) | float32 | |
| steps/infos/qvel | Tensor | (30,) | float32 | |
| steps/is_first | Tensor | bool | ||
| steps/is_last | Tensor | bool | ||
| steps/is_terminal | Tensor | bool | ||
| steps/observation | Tensor | (45,) | float32 | |
| steps/reward | Tensor | float32 |
- Examples (tfds.as_dataframe):
d4rl_adroit_pen/v1-cloned
Config description: See more details about the task and its versions in https://github.com/rail-berkeley/d4rl/wiki/Tasks#adroit
Download size:
147.89 MiBDataset size:
1.43 GiBAuto-cached (documentation): No
Splits:
| Split | Examples |
|---|---|
'train' |
3,755 |
- Feature structure:
FeaturesDict({
'algorithm': string,
'policy': FeaturesDict({
'fc0': FeaturesDict({
'bias': Tensor(shape=(256,), dtype=float32),
'weight': Tensor(shape=(45, 256), dtype=float32),
}),
'fc1': FeaturesDict({
'bias': Tensor(shape=(256,), dtype=float32),
'weight': Tensor(shape=(256, 256), dtype=float32),
}),
'last_fc': FeaturesDict({
'bias': Tensor(shape=(24,), dtype=float32),
'weight': Tensor(shape=(256, 24), dtype=float32),
}),
'nonlinearity': string,
'output_distribution': string,
}),
'steps': Dataset({
'action': Tensor(shape=(24,), dtype=float32),
'discount': float32,
'infos': FeaturesDict({
'desired_orien': Tensor(shape=(4,), dtype=float32),
'qpos': Tensor(shape=(30,), dtype=float32),
'qvel': Tensor(shape=(30,), dtype=float32),
}),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': Tensor(shape=(45,), dtype=float32),
'reward': float32,
}),
})
- Feature documentation:
| Feature | Class | Shape | Dtype | Description |
|---|---|---|---|---|
| FeaturesDict | ||||
| algorithm | Tensor | string | ||
| policy | FeaturesDict | |||
| policy/fc0 | FeaturesDict | |||
| policy/fc0/bias | Tensor | (256,) | float32 | |
| policy/fc0/weight | Tensor | (45, 256) | float32 | |
| policy/fc1 | FeaturesDict | |||
| policy/fc1/bias | Tensor | (256,) | float32 | |
| policy/fc1/weight | Tensor | (256, 256) | float32 | |
| policy/last_fc | FeaturesDict | |||
| policy/last_fc/bias | Tensor | (24,) | float32 | |
| policy/last_fc/weight | Tensor | (256, 24) | float32 | |
| policy/nonlinearity | Tensor | string | ||
| policy/output_distribution | Tensor | string | ||
| steps | Dataset | |||
| steps/action | Tensor | (24,) | float32 | |
| steps/discount | Tensor | float32 | ||
| steps/infos | FeaturesDict | |||
| steps/infos/desired_orien | Tensor | (4,) | float32 | |
| steps/infos/qpos | Tensor | (30,) | float32 | |
| steps/infos/qvel | Tensor | (30,) | float32 | |
| steps/is_first | Tensor | bool | ||
| steps/is_last | Tensor | bool | ||
| steps/is_terminal | Tensor | bool | ||
| steps/observation | Tensor | (45,) | float32 | |
| steps/reward | Tensor | float32 |
- Examples (tfds.as_dataframe):
d4rl_adroit_pen/v1-expert
Download size:
249.90 MiBDataset size:
548.47 MiBAuto-cached (documentation): No
Splits:
| Split | Examples |
|---|---|
'train' |
5,000 |
- Feature structure:
FeaturesDict({
'algorithm': string,
'policy': FeaturesDict({
'fc0': FeaturesDict({
'bias': Tensor(shape=(64,), dtype=float32),
'weight': Tensor(shape=(64, 45), dtype=float32),
}),
'fc1': FeaturesDict({
'bias': Tensor(shape=(64,), dtype=float32),
'weight': Tensor(shape=(64, 64), dtype=float32),
}),
'last_fc': FeaturesDict({
'bias': Tensor(shape=(24,), dtype=float32),
'weight': Tensor(shape=(24, 64), dtype=float32),
}),
'last_fc_log_std': FeaturesDict({
'bias': Tensor(shape=(24,), dtype=float32),
'weight': Tensor(shape=(24, 64), dtype=float32),
}),
'nonlinearity': string,
'output_distribution': string,
}),
'steps': Dataset({
'action': Tensor(shape=(24,), dtype=float32),
'discount': float32,
'infos': FeaturesDict({
'action_log_std': Tensor(shape=(24,), dtype=float32),
'action_mean': Tensor(shape=(24,), dtype=float32),
'desired_orien': Tensor(shape=(4,), dtype=float32),
'qpos': Tensor(shape=(30,), dtype=float32),
'qvel': Tensor(shape=(30,), dtype=float32),
}),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': Tensor(shape=(45,), dtype=float32),
'reward': float32,
}),
})
- Feature documentation:
| Feature | Class | Shape | Dtype | Description |
|---|---|---|---|---|
| FeaturesDict | ||||
| algorithm | Tensor | string | ||
| policy | FeaturesDict | |||
| policy/fc0 | FeaturesDict | |||
| policy/fc0/bias | Tensor | (64,) | float32 | |
| policy/fc0/weight | Tensor | (64, 45) | float32 | |
| policy/fc1 | FeaturesDict | |||
| policy/fc1/bias | Tensor | (64,) | float32 | |
| policy/fc1/weight | Tensor | (64, 64) | float32 | |
| policy/last_fc | FeaturesDict | |||
| policy/last_fc/bias | Tensor | (24,) | float32 | |
| policy/last_fc/weight | Tensor | (24, 64) | float32 | |
| policy/last_fc_log_std | FeaturesDict | |||
| policy/last_fc_log_std/bias | Tensor | (24,) | float32 | |
| policy/last_fc_log_std/weight | Tensor | (24, 64) | float32 | |
| policy/nonlinearity | Tensor | string | ||
| policy/output_distribution | Tensor | string | ||
| steps | Dataset | |||
| steps/action | Tensor | (24,) | float32 | |
| steps/discount | Tensor | float32 | ||
| steps/infos | FeaturesDict | |||
| steps/infos/action_log_std | Tensor | (24,) | float32 | |
| steps/infos/action_mean | Tensor | (24,) | float32 | |
| steps/infos/desired_orien | Tensor | (4,) | float32 | |
| steps/infos/qpos | Tensor | (30,) | float32 | |
| steps/infos/qvel | Tensor | (30,) | float32 | |
| steps/is_first | Tensor | bool | ||
| steps/is_last | Tensor | bool | ||
| steps/is_terminal | Tensor | bool | ||
| steps/observation | Tensor | (45,) | float32 | |
| steps/reward | Tensor | float32 |
- Examples (tfds.as_dataframe):