- Keterangan :
D4RL adalah tolok ukur sumber terbuka untuk pembelajaran penguatan offline. Ini menyediakan lingkungan dan kumpulan data standar untuk pelatihan dan algoritma benchmarking.
Kumpulan data mengikuti format RLDS untuk mewakili langkah dan episode.
Deskripsi konfigurasi : Lihat detail selengkapnya tentang tugas dan versinya di https://github.com/rail-berkeley/d4rl/wiki/Tasks#gym
Kode sumber :
tfds.d4rl.d4rl_mujoco_halfcheetah.D4rlMujocoHalfcheetah
Versi :
-
1.0.0
: Rilis awal. -
1.0.1
: Dukungan untuk metadata episode dan langkah, serta penyatuan bentuk hadiah di semua konfigurasi. -
1.1.0
: Ditambahkan is_last. -
1.2.0
(default): Diperbarui untuk memperhitungkan observasi berikutnya.
-
Kunci yang diawasi (Lihat dokumen
as_supervised
):None
Gambar ( tfds.show_examples ): Tidak didukung.
Kutipan :
@misc{fu2020d4rl,
title={D4RL: Datasets for Deep Data-Driven Reinforcement Learning},
author={Justin Fu and Aviral Kumar and Ofir Nachum and George Tucker and Sergey Levine},
year={2020},
eprint={2004.07219},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
d4rl_mujoco_halfcheetah/v0-expert (konfigurasi default)
Ukuran unduhan :
83.44 MiB
Ukuran kumpulan data :
98.43 MiB
Cache otomatis ( dokumentasi ): Ya
Perpecahan :
Membelah | Contoh |
---|---|
'train' | 1.002 |
- Struktur fitur :
FeaturesDict({
'steps': Dataset({
'action': Tensor(shape=(6,), dtype=float32),
'discount': float32,
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': Tensor(shape=(17,), dtype=float32),
'reward': float32,
}),
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Tipe D | Keterangan |
---|---|---|---|---|
FiturDict | ||||
Langkah | Himpunan data | |||
langkah/tindakan | Tensor | (6,) | float32 | |
langkah/diskon | Tensor | float32 | ||
langkah/adalah_pertama | Tensor | bodoh | ||
langkah/adalah_terakhir | Tensor | bodoh | ||
langkah/is_terminal | Tensor | bodoh | ||
langkah/pengamatan | Tensor | (17,) | float32 | |
langkah/hadiah | Tensor | float32 |
- Contoh ( tfds.as_dataframe ):
d4rl_mujoco_halfcheetah/v0-medium
Ukuran unduhan :
82.92 MiB
Ukuran kumpulan data :
98.43 MiB
Cache otomatis ( dokumentasi ): Ya
Perpecahan :
Membelah | Contoh |
---|---|
'train' | 1.002 |
- Struktur fitur :
FeaturesDict({
'steps': Dataset({
'action': Tensor(shape=(6,), dtype=float32),
'discount': float32,
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': Tensor(shape=(17,), dtype=float32),
'reward': float32,
}),
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Tipe D | Keterangan |
---|---|---|---|---|
FiturDict | ||||
Langkah | Himpunan data | |||
langkah/tindakan | Tensor | (6,) | float32 | |
langkah/diskon | Tensor | float32 | ||
langkah/adalah_pertama | Tensor | bodoh | ||
langkah/adalah_terakhir | Tensor | bodoh | ||
langkah/is_terminal | Tensor | bodoh | ||
langkah/pengamatan | Tensor | (17,) | float32 | |
langkah/hadiah | Tensor | float32 |
- Contoh ( tfds.as_dataframe ):
d4rl_mujoco_halfcheetah/v0-medium-expert
Ukuran unduhan :
166.36 MiB
Ukuran kumpulan data :
196.86 MiB
Cache otomatis ( dokumentasi ): Hanya ketika
shuffle_files=False
(kereta)Perpecahan :
Membelah | Contoh |
---|---|
'train' | 2.004 |
- Struktur fitur :
FeaturesDict({
'steps': Dataset({
'action': Tensor(shape=(6,), dtype=float32),
'discount': float32,
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': Tensor(shape=(17,), dtype=float32),
'reward': float32,
}),
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Tipe D | Keterangan |
---|---|---|---|---|
FiturDict | ||||
Langkah | Himpunan data | |||
langkah/tindakan | Tensor | (6,) | float32 | |
langkah/diskon | Tensor | float32 | ||
langkah/adalah_pertama | Tensor | bodoh | ||
langkah/adalah_terakhir | Tensor | bodoh | ||
langkah/is_terminal | Tensor | bodoh | ||
langkah/pengamatan | Tensor | (17,) | float32 | |
langkah/hadiah | Tensor | float32 |
- Contoh ( tfds.as_dataframe ):
d4rl_mujoco_halfcheetah/v0-campuran
Ukuran unduhan :
8.60 MiB
Ukuran kumpulan data :
9.94 MiB
Cache otomatis ( dokumentasi ): Ya
Perpecahan :
Membelah | Contoh |
---|---|
'train' | 101 |
- Struktur fitur :
FeaturesDict({
'steps': Dataset({
'action': Tensor(shape=(6,), dtype=float32),
'discount': float32,
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': Tensor(shape=(17,), dtype=float32),
'reward': float32,
}),
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Tipe D | Keterangan |
---|---|---|---|---|
FiturDict | ||||
Langkah | Himpunan data | |||
langkah/tindakan | Tensor | (6,) | float32 | |
langkah/diskon | Tensor | float32 | ||
langkah/adalah_pertama | Tensor | bodoh | ||
langkah/adalah_terakhir | Tensor | bodoh | ||
langkah/is_terminal | Tensor | bodoh | ||
langkah/pengamatan | Tensor | (17,) | float32 | |
langkah/hadiah | Tensor | float32 |
- Contoh ( tfds.as_dataframe ):
d4rl_mujoco_halfcheetah/v0-random
Ukuran unduhan :
84.79 MiB
Ukuran kumpulan data :
98.43 MiB
Cache otomatis ( dokumentasi ): Ya
Perpecahan :
Membelah | Contoh |
---|---|
'train' | 1.002 |
- Struktur fitur :
FeaturesDict({
'steps': Dataset({
'action': Tensor(shape=(6,), dtype=float32),
'discount': float32,
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': Tensor(shape=(17,), dtype=float32),
'reward': float32,
}),
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Tipe D | Keterangan |
---|---|---|---|---|
FiturDict | ||||
Langkah | Himpunan data | |||
langkah/tindakan | Tensor | (6,) | float32 | |
langkah/diskon | Tensor | float32 | ||
langkah/adalah_pertama | Tensor | bodoh | ||
langkah/adalah_terakhir | Tensor | bodoh | ||
langkah/is_terminal | Tensor | bodoh | ||
langkah/pengamatan | Tensor | (17,) | float32 | |
langkah/hadiah | Tensor | float32 |
- Contoh ( tfds.as_dataframe ):
d4rl_mujoco_halfcheetah/v1-expert
Ukuran unduhan :
146.94 MiB
Ukuran kumpulan data :
451.88 MiB
Cache otomatis ( dokumentasi ): Tidak
Perpecahan :
Membelah | Contoh |
---|---|
'train' | 1.000 |
- Struktur fitur :
FeaturesDict({
'algorithm': string,
'iteration': int32,
'policy': FeaturesDict({
'fc0': FeaturesDict({
'bias': Tensor(shape=(256,), dtype=float32),
'weight': Tensor(shape=(256, 17), dtype=float32),
}),
'fc1': FeaturesDict({
'bias': Tensor(shape=(256,), dtype=float32),
'weight': Tensor(shape=(256, 256), dtype=float32),
}),
'last_fc': FeaturesDict({
'bias': Tensor(shape=(6,), dtype=float32),
'weight': Tensor(shape=(6, 256), dtype=float32),
}),
'last_fc_log_std': FeaturesDict({
'bias': Tensor(shape=(6,), dtype=float32),
'weight': Tensor(shape=(6, 256), dtype=float32),
}),
'nonlinearity': string,
'output_distribution': string,
}),
'steps': Dataset({
'action': Tensor(shape=(6,), dtype=float32),
'discount': float32,
'infos': FeaturesDict({
'action_log_probs': float32,
'qpos': Tensor(shape=(9,), dtype=float32),
'qvel': Tensor(shape=(9,), dtype=float32),
}),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': Tensor(shape=(17,), dtype=float32),
'reward': float32,
}),
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Tipe D | Keterangan |
---|---|---|---|---|
FiturDict | ||||
algoritma | Tensor | rangkaian | ||
pengulangan | Tensor | int32 | ||
kebijakan | FiturDict | |||
kebijakan/fc0 | FiturDict | |||
kebijakan/fc0/bias | Tensor | (256,) | float32 | |
kebijakan/fc0/bobot | Tensor | (256, 17) | float32 | |
kebijakan/fc1 | FiturDict | |||
kebijakan/fc1/bias | Tensor | (256,) | float32 | |
kebijakan/fc1/bobot | Tensor | (256, 256) | float32 | |
kebijakan/last_fc | FiturDict | |||
kebijakan/last_fc/bias | Tensor | (6,) | float32 | |
policy/last_fc/weight | Tensor | (6, 256) | float32 | |
kebijakan/last_fc_log_std | FiturDict | |||
kebijakan/last_fc_log_std/bias | Tensor | (6,) | float32 | |
policy/last_fc_log_std/weight | Tensor | (6, 256) | float32 | |
kebijakan/nonlinier | Tensor | rangkaian | ||
kebijakan/output_distribusi | Tensor | rangkaian | ||
Langkah | Himpunan data | |||
langkah/tindakan | Tensor | (6,) | float32 | |
langkah/diskon | Tensor | float32 | ||
langkah/info | FiturDict | |||
langkah/info/action_log_probs | Tensor | float32 | ||
langkah/info/qpos | Tensor | (9,) | float32 | |
langkah/info/qvel | Tensor | (9,) | float32 | |
langkah/adalah_pertama | Tensor | bodoh | ||
langkah/adalah_terakhir | Tensor | bodoh | ||
langkah/is_terminal | Tensor | bodoh | ||
langkah/pengamatan | Tensor | (17,) | float32 | |
langkah/hadiah | Tensor | float32 |
- Contoh ( tfds.as_dataframe ):
d4rl_mujoco_halfcheetah/v1-medium
Ukuran unduhan :
146.65 MiB
Ukuran kumpulan data :
451.88 MiB
Cache otomatis ( dokumentasi ): Tidak
Perpecahan :
Membelah | Contoh |
---|---|
'train' | 1.000 |
- Struktur fitur :
FeaturesDict({
'algorithm': string,
'iteration': int32,
'policy': FeaturesDict({
'fc0': FeaturesDict({
'bias': Tensor(shape=(256,), dtype=float32),
'weight': Tensor(shape=(256, 17), dtype=float32),
}),
'fc1': FeaturesDict({
'bias': Tensor(shape=(256,), dtype=float32),
'weight': Tensor(shape=(256, 256), dtype=float32),
}),
'last_fc': FeaturesDict({
'bias': Tensor(shape=(6,), dtype=float32),
'weight': Tensor(shape=(6, 256), dtype=float32),
}),
'last_fc_log_std': FeaturesDict({
'bias': Tensor(shape=(6,), dtype=float32),
'weight': Tensor(shape=(6, 256), dtype=float32),
}),
'nonlinearity': string,
'output_distribution': string,
}),
'steps': Dataset({
'action': Tensor(shape=(6,), dtype=float32),
'discount': float32,
'infos': FeaturesDict({
'action_log_probs': float32,
'qpos': Tensor(shape=(9,), dtype=float32),
'qvel': Tensor(shape=(9,), dtype=float32),
}),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': Tensor(shape=(17,), dtype=float32),
'reward': float32,
}),
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Tipe D | Keterangan |
---|---|---|---|---|
FiturDict | ||||
algoritma | Tensor | rangkaian | ||
pengulangan | Tensor | int32 | ||
kebijakan | FiturDict | |||
kebijakan/fc0 | FiturDict | |||
kebijakan/fc0/bias | Tensor | (256,) | float32 | |
kebijakan/fc0/bobot | Tensor | (256, 17) | float32 | |
kebijakan/fc1 | FiturDict | |||
kebijakan/fc1/bias | Tensor | (256,) | float32 | |
kebijakan/fc1/bobot | Tensor | (256, 256) | float32 | |
kebijakan/last_fc | FiturDict | |||
kebijakan/last_fc/bias | Tensor | (6,) | float32 | |
policy/last_fc/weight | Tensor | (6, 256) | float32 | |
kebijakan/last_fc_log_std | FiturDict | |||
kebijakan/last_fc_log_std/bias | Tensor | (6,) | float32 | |
policy/last_fc_log_std/weight | Tensor | (6, 256) | float32 | |
kebijakan/nonlinier | Tensor | rangkaian | ||
kebijakan/output_distribusi | Tensor | rangkaian | ||
Langkah | Himpunan data | |||
langkah/tindakan | Tensor | (6,) | float32 | |
langkah/diskon | Tensor | float32 | ||
langkah/info | FiturDict | |||
langkah/info/action_log_probs | Tensor | float32 | ||
langkah/info/qpos | Tensor | (9,) | float32 | |
langkah/info/qvel | Tensor | (9,) | float32 | |
langkah/adalah_pertama | Tensor | bodoh | ||
langkah/adalah_terakhir | Tensor | bodoh | ||
langkah/is_terminal | Tensor | bodoh | ||
langkah/pengamatan | Tensor | (17,) | float32 | |
langkah/hadiah | Tensor | float32 |
- Contoh ( tfds.as_dataframe ):
d4rl_mujoco_halfcheetah/v1-medium-expert
Ukuran unduhan :
293.00 MiB
Ukuran kumpulan data :
342.37 MiB
Cache otomatis ( dokumentasi ): Tidak
Perpecahan :
Membelah | Contoh |
---|---|
'train' | 2.000 |
- Struktur fitur :
FeaturesDict({
'steps': Dataset({
'action': Tensor(shape=(6,), dtype=float32),
'discount': float32,
'infos': FeaturesDict({
'action_log_probs': float32,
'qpos': Tensor(shape=(9,), dtype=float32),
'qvel': Tensor(shape=(9,), dtype=float32),
}),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': Tensor(shape=(17,), dtype=float32),
'reward': float32,
}),
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Tipe D | Keterangan |
---|---|---|---|---|
FiturDict | ||||
Langkah | Himpunan data | |||
langkah/tindakan | Tensor | (6,) | float32 | |
langkah/diskon | Tensor | float32 | ||
langkah/info | FiturDict | |||
langkah/info/action_log_probs | Tensor | float32 | ||
langkah/info/qpos | Tensor | (9,) | float32 | |
langkah/info/qvel | Tensor | (9,) | float32 | |
langkah/adalah_pertama | Tensor | bodoh | ||
langkah/adalah_terakhir | Tensor | bodoh | ||
langkah/is_terminal | Tensor | bodoh | ||
langkah/pengamatan | Tensor | (17,) | float32 | |
langkah/hadiah | Tensor | float32 |
- Contoh ( tfds.as_dataframe ):
d4rl_mujoco_halfcheetah/v1-medium-replay
Ukuran unduhan :
57.68 MiB
Ukuran kumpulan data :
34.59 MiB
Cache otomatis ( dokumentasi ): Ya
Perpecahan :
Membelah | Contoh |
---|---|
'train' | 202 |
- Struktur fitur :
FeaturesDict({
'algorithm': string,
'iteration': int32,
'steps': Dataset({
'action': Tensor(shape=(6,), dtype=float64),
'discount': float64,
'infos': FeaturesDict({
'action_log_probs': float64,
'qpos': Tensor(shape=(9,), dtype=float64),
'qvel': Tensor(shape=(9,), dtype=float64),
}),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': Tensor(shape=(17,), dtype=float64),
'reward': float64,
}),
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Tipe D | Keterangan |
---|---|---|---|---|
FiturDict | ||||
algoritma | Tensor | rangkaian | ||
pengulangan | Tensor | int32 | ||
Langkah | Himpunan data | |||
langkah/tindakan | Tensor | (6,) | float64 | |
langkah/diskon | Tensor | float64 | ||
langkah/info | FiturDict | |||
langkah/info/action_log_probs | Tensor | float64 | ||
langkah/info/qpos | Tensor | (9,) | float64 | |
langkah/info/qvel | Tensor | (9,) | float64 | |
langkah/adalah_pertama | Tensor | bodoh | ||
langkah/adalah_terakhir | Tensor | bodoh | ||
langkah/is_terminal | Tensor | bodoh | ||
langkah/pengamatan | Tensor | (17,) | float64 | |
langkah/hadiah | Tensor | float64 |
- Contoh ( tfds.as_dataframe ):
d4rl_mujoco_halfcheetah/v1-putar ulang penuh
Ukuran unduhan :
285.01 MiB
Ukuran kumpulan data :
171.22 MiB
Cache otomatis ( dokumentasi ): Hanya ketika
shuffle_files=False
(kereta)Perpecahan :
Membelah | Contoh |
---|---|
'train' | 1.000 |
- Struktur fitur :
FeaturesDict({
'algorithm': string,
'iteration': int32,
'steps': Dataset({
'action': Tensor(shape=(6,), dtype=float64),
'discount': float64,
'infos': FeaturesDict({
'action_log_probs': float64,
'qpos': Tensor(shape=(9,), dtype=float64),
'qvel': Tensor(shape=(9,), dtype=float64),
}),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': Tensor(shape=(17,), dtype=float64),
'reward': float64,
}),
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Tipe D | Keterangan |
---|---|---|---|---|
FiturDict | ||||
algoritma | Tensor | rangkaian | ||
pengulangan | Tensor | int32 | ||
Langkah | Himpunan data | |||
langkah/tindakan | Tensor | (6,) | float64 | |
langkah/diskon | Tensor | float64 | ||
langkah/info | FiturDict | |||
langkah/info/action_log_probs | Tensor | float64 | ||
langkah/info/qpos | Tensor | (9,) | float64 | |
langkah/info/qvel | Tensor | (9,) | float64 | |
langkah/adalah_pertama | Tensor | bodoh | ||
langkah/adalah_terakhir | Tensor | bodoh | ||
langkah/is_terminal | Tensor | bodoh | ||
langkah/pengamatan | Tensor | (17,) | float64 | |
langkah/hadiah | Tensor | float64 |
- Contoh ( tfds.as_dataframe ):
d4rl_mujoco_halfcheetah/v1-acak
Ukuran unduhan :
145.19 MiB
Ukuran kumpulan data :
171.18 MiB
Cache otomatis ( dokumentasi ): Hanya ketika
shuffle_files=False
(kereta)Perpecahan :
Membelah | Contoh |
---|---|
'train' | 1.000 |
- Struktur fitur :
FeaturesDict({
'steps': Dataset({
'action': Tensor(shape=(6,), dtype=float32),
'discount': float32,
'infos': FeaturesDict({
'action_log_probs': float32,
'qpos': Tensor(shape=(9,), dtype=float32),
'qvel': Tensor(shape=(9,), dtype=float32),
}),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': Tensor(shape=(17,), dtype=float32),
'reward': float32,
}),
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Tipe D | Keterangan |
---|---|---|---|---|
FiturDict | ||||
Langkah | Himpunan data | |||
langkah/tindakan | Tensor | (6,) | float32 | |
langkah/diskon | Tensor | float32 | ||
langkah/info | FiturDict | |||
langkah/info/action_log_probs | Tensor | float32 | ||
langkah/info/qpos | Tensor | (9,) | float32 | |
langkah/info/qvel | Tensor | (9,) | float32 | |
langkah/adalah_pertama | Tensor | bodoh | ||
langkah/adalah_terakhir | Tensor | bodoh | ||
langkah/is_terminal | Tensor | bodoh | ||
langkah/pengamatan | Tensor | (17,) | float32 | |
langkah/hadiah | Tensor | float32 |
- Contoh ( tfds.as_dataframe ):
d4rl_mujoco_halfcheetah/v2-expert
Ukuran unduhan :
226.46 MiB
Ukuran kumpulan data :
451.88 MiB
Cache otomatis ( dokumentasi ): Tidak
Perpecahan :
Membelah | Contoh |
---|---|
'train' | 1.000 |
- Struktur fitur :
FeaturesDict({
'algorithm': string,
'iteration': int32,
'policy': FeaturesDict({
'fc0': FeaturesDict({
'bias': Tensor(shape=(256,), dtype=float32),
'weight': Tensor(shape=(256, 17), dtype=float32),
}),
'fc1': FeaturesDict({
'bias': Tensor(shape=(256,), dtype=float32),
'weight': Tensor(shape=(256, 256), dtype=float32),
}),
'last_fc': FeaturesDict({
'bias': Tensor(shape=(6,), dtype=float32),
'weight': Tensor(shape=(6, 256), dtype=float32),
}),
'last_fc_log_std': FeaturesDict({
'bias': Tensor(shape=(6,), dtype=float32),
'weight': Tensor(shape=(6, 256), dtype=float32),
}),
'nonlinearity': string,
'output_distribution': string,
}),
'steps': Dataset({
'action': Tensor(shape=(6,), dtype=float32),
'discount': float32,
'infos': FeaturesDict({
'action_log_probs': float64,
'qpos': Tensor(shape=(9,), dtype=float64),
'qvel': Tensor(shape=(9,), dtype=float64),
}),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': Tensor(shape=(17,), dtype=float32),
'reward': float32,
}),
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Tipe D | Keterangan |
---|---|---|---|---|
FiturDict | ||||
algoritma | Tensor | rangkaian | ||
pengulangan | Tensor | int32 | ||
kebijakan | FiturDict | |||
kebijakan/fc0 | FiturDict | |||
kebijakan/fc0/bias | Tensor | (256,) | float32 | |
kebijakan/fc0/bobot | Tensor | (256, 17) | float32 | |
kebijakan/fc1 | FiturDict | |||
kebijakan/fc1/bias | Tensor | (256,) | float32 | |
kebijakan/fc1/bobot | Tensor | (256, 256) | float32 | |
kebijakan/last_fc | FiturDict | |||
kebijakan/last_fc/bias | Tensor | (6,) | float32 | |
policy/last_fc/weight | Tensor | (6, 256) | float32 | |
kebijakan/last_fc_log_std | FiturDict | |||
kebijakan/last_fc_log_std/bias | Tensor | (6,) | float32 | |
policy/last_fc_log_std/weight | Tensor | (6, 256) | float32 | |
kebijakan/nonlinier | Tensor | rangkaian | ||
kebijakan/output_distribusi | Tensor | rangkaian | ||
Langkah | Himpunan data | |||
langkah/tindakan | Tensor | (6,) | float32 | |
langkah/diskon | Tensor | float32 | ||
langkah/info | FiturDict | |||
langkah/info/action_log_probs | Tensor | float64 | ||
langkah/info/qpos | Tensor | (9,) | float64 | |
langkah/info/qvel | Tensor | (9,) | float64 | |
langkah/adalah_pertama | Tensor | bodoh | ||
langkah/adalah_terakhir | Tensor | bodoh | ||
langkah/is_terminal | Tensor | bodoh | ||
langkah/pengamatan | Tensor | (17,) | float32 | |
langkah/hadiah | Tensor | float32 |
- Contoh ( tfds.as_dataframe ):
d4rl_mujoco_halfcheetah/v2-putar ulang penuh
Ukuran unduhan :
277.88 MiB
Ukuran kumpulan data :
171.22 MiB
Cache otomatis ( dokumentasi ): Hanya ketika
shuffle_files=False
(kereta)Perpecahan :
Membelah | Contoh |
---|---|
'train' | 1.000 |
- Struktur fitur :
FeaturesDict({
'algorithm': string,
'iteration': int32,
'steps': Dataset({
'action': Tensor(shape=(6,), dtype=float32),
'discount': float32,
'infos': FeaturesDict({
'action_log_probs': float64,
'qpos': Tensor(shape=(9,), dtype=float64),
'qvel': Tensor(shape=(9,), dtype=float64),
}),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': Tensor(shape=(17,), dtype=float32),
'reward': float32,
}),
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Tipe D | Keterangan |
---|---|---|---|---|
FiturDict | ||||
algoritma | Tensor | rangkaian | ||
pengulangan | Tensor | int32 | ||
Langkah | Himpunan data | |||
langkah/tindakan | Tensor | (6,) | float32 | |
langkah/diskon | Tensor | float32 | ||
langkah/info | FiturDict | |||
langkah/info/action_log_probs | Tensor | float64 | ||
langkah/info/qpos | Tensor | (9,) | float64 | |
langkah/info/qvel | Tensor | (9,) | float64 | |
langkah/adalah_pertama | Tensor | bodoh | ||
langkah/adalah_terakhir | Tensor | bodoh | ||
langkah/is_terminal | Tensor | bodoh | ||
langkah/pengamatan | Tensor | (17,) | float32 | |
langkah/hadiah | Tensor | float32 |
- Contoh ( tfds.as_dataframe ):
d4rl_mujoco_halfcheetah/v2-medium
Ukuran unduhan :
226.71 MiB
Ukuran kumpulan data :
451.88 MiB
Cache otomatis ( dokumentasi ): Tidak
Perpecahan :
Membelah | Contoh |
---|---|
'train' | 1.000 |
- Struktur fitur :
FeaturesDict({
'algorithm': string,
'iteration': int32,
'policy': FeaturesDict({
'fc0': FeaturesDict({
'bias': Tensor(shape=(256,), dtype=float32),
'weight': Tensor(shape=(256, 17), dtype=float32),
}),
'fc1': FeaturesDict({
'bias': Tensor(shape=(256,), dtype=float32),
'weight': Tensor(shape=(256, 256), dtype=float32),
}),
'last_fc': FeaturesDict({
'bias': Tensor(shape=(6,), dtype=float32),
'weight': Tensor(shape=(6, 256), dtype=float32),
}),
'last_fc_log_std': FeaturesDict({
'bias': Tensor(shape=(6,), dtype=float32),
'weight': Tensor(shape=(6, 256), dtype=float32),
}),
'nonlinearity': string,
'output_distribution': string,
}),
'steps': Dataset({
'action': Tensor(shape=(6,), dtype=float32),
'discount': float32,
'infos': FeaturesDict({
'action_log_probs': float64,
'qpos': Tensor(shape=(9,), dtype=float64),
'qvel': Tensor(shape=(9,), dtype=float64),
}),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': Tensor(shape=(17,), dtype=float32),
'reward': float32,
}),
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Tipe D | Keterangan |
---|---|---|---|---|
FiturDict | ||||
algoritma | Tensor | rangkaian | ||
pengulangan | Tensor | int32 | ||
kebijakan | FiturDict | |||
kebijakan/fc0 | FiturDict | |||
kebijakan/fc0/bias | Tensor | (256,) | float32 | |
kebijakan/fc0/bobot | Tensor | (256, 17) | float32 | |
kebijakan/fc1 | FiturDict | |||
kebijakan/fc1/bias | Tensor | (256,) | float32 | |
kebijakan/fc1/bobot | Tensor | (256, 256) | float32 | |
kebijakan/last_fc | FiturDict | |||
kebijakan/last_fc/bias | Tensor | (6,) | float32 | |
policy/last_fc/weight | Tensor | (6, 256) | float32 | |
kebijakan/last_fc_log_std | FiturDict | |||
kebijakan/last_fc_log_std/bias | Tensor | (6,) | float32 | |
policy/last_fc_log_std/weight | Tensor | (6, 256) | float32 | |
kebijakan/nonlinier | Tensor | rangkaian | ||
kebijakan/output_distribusi | Tensor | rangkaian | ||
Langkah | Himpunan data | |||
langkah/tindakan | Tensor | (6,) | float32 | |
langkah/diskon | Tensor | float32 | ||
langkah/info | FiturDict | |||
langkah/info/action_log_probs | Tensor | float64 | ||
langkah/info/qpos | Tensor | (9,) | float64 | |
langkah/info/qvel | Tensor | (9,) | float64 | |
langkah/adalah_pertama | Tensor | bodoh | ||
langkah/adalah_terakhir | Tensor | bodoh | ||
langkah/is_terminal | Tensor | bodoh | ||
langkah/pengamatan | Tensor | (17,) | float32 | |
langkah/hadiah | Tensor | float32 |
- Contoh ( tfds.as_dataframe ):
d4rl_mujoco_halfcheetah/v2-medium-expert
Ukuran unduhan :
452.58 MiB
Ukuran kumpulan data :
342.37 MiB
Cache otomatis ( dokumentasi ): Tidak
Perpecahan :
Membelah | Contoh |
---|---|
'train' | 2.000 |
- Struktur fitur :
FeaturesDict({
'steps': Dataset({
'action': Tensor(shape=(6,), dtype=float32),
'discount': float32,
'infos': FeaturesDict({
'action_log_probs': float64,
'qpos': Tensor(shape=(9,), dtype=float64),
'qvel': Tensor(shape=(9,), dtype=float64),
}),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': Tensor(shape=(17,), dtype=float32),
'reward': float32,
}),
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Tipe D | Keterangan |
---|---|---|---|---|
FiturDict | ||||
Langkah | Himpunan data | |||
langkah/tindakan | Tensor | (6,) | float32 | |
langkah/diskon | Tensor | float32 | ||
langkah/info | FiturDict | |||
langkah/info/action_log_probs | Tensor | float64 | ||
langkah/info/qpos | Tensor | (9,) | float64 | |
langkah/info/qvel | Tensor | (9,) | float64 | |
langkah/adalah_pertama | Tensor | bodoh | ||
langkah/adalah_terakhir | Tensor | bodoh | ||
langkah/is_terminal | Tensor | bodoh | ||
langkah/pengamatan | Tensor | (17,) | float32 | |
langkah/hadiah | Tensor | float32 |
- Contoh ( tfds.as_dataframe ):
d4rl_mujoco_halfcheetah/v2-medium-replay
Ukuran unduhan :
56.69 MiB
Ukuran kumpulan data :
34.59 MiB
Cache otomatis ( dokumentasi ): Ya
Perpecahan :
Membelah | Contoh |
---|---|
'train' | 202 |
- Struktur fitur :
FeaturesDict({
'algorithm': string,
'iteration': int32,
'steps': Dataset({
'action': Tensor(shape=(6,), dtype=float32),
'discount': float32,
'infos': FeaturesDict({
'action_log_probs': float64,
'qpos': Tensor(shape=(9,), dtype=float64),
'qvel': Tensor(shape=(9,), dtype=float64),
}),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': Tensor(shape=(17,), dtype=float32),
'reward': float32,
}),
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Tipe D | Keterangan |
---|---|---|---|---|
FiturDict | ||||
algoritma | Tensor | rangkaian | ||
pengulangan | Tensor | int32 | ||
Langkah | Himpunan data | |||
langkah/tindakan | Tensor | (6,) | float32 | |
langkah/diskon | Tensor | float32 | ||
langkah/info | FiturDict | |||
langkah/info/action_log_probs | Tensor | float64 | ||
langkah/info/qpos | Tensor | (9,) | float64 | |
langkah/info/qvel | Tensor | (9,) | float64 | |
langkah/adalah_pertama | Tensor | bodoh | ||
langkah/adalah_terakhir | Tensor | bodoh | ||
langkah/is_terminal | Tensor | bodoh | ||
langkah/pengamatan | Tensor | (17,) | float32 | |
langkah/hadiah | Tensor | float32 |
- Contoh ( tfds.as_dataframe ):
d4rl_mujoco_halfcheetah/v2-acak
Ukuran unduhan :
226.34 MiB
Ukuran kumpulan data :
171.18 MiB
Cache otomatis ( dokumentasi ): Hanya ketika
shuffle_files=False
(kereta)Perpecahan :
Membelah | Contoh |
---|---|
'train' | 1.000 |
- Struktur fitur :
FeaturesDict({
'steps': Dataset({
'action': Tensor(shape=(6,), dtype=float32),
'discount': float32,
'infos': FeaturesDict({
'action_log_probs': float64,
'qpos': Tensor(shape=(9,), dtype=float64),
'qvel': Tensor(shape=(9,), dtype=float64),
}),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': Tensor(shape=(17,), dtype=float32),
'reward': float32,
}),
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Tipe D | Keterangan |
---|---|---|---|---|
FiturDict | ||||
Langkah | Himpunan data | |||
langkah/tindakan | Tensor | (6,) | float32 | |
langkah/diskon | Tensor | float32 | ||
langkah/info | FiturDict | |||
langkah/info/action_log_probs | Tensor | float64 | ||
langkah/info/qpos | Tensor | (9,) | float64 | |
langkah/info/qvel | Tensor | (9,) | float64 | |
langkah/adalah_pertama | Tensor | bodoh | ||
langkah/adalah_terakhir | Tensor | bodoh | ||
langkah/is_terminal | Tensor | bodoh | ||
langkah/pengamatan | Tensor | (17,) | float32 | |
langkah/hadiah | Tensor | float32 |
- Contoh ( tfds.as_dataframe ):