dlr_sara_grid_clamp_converted_externally_to_rlds
Stay organized with collections
Save and categorize content based on your preferences.
place grid clamp onto grids on table
Split |
Examples |
'train' |
107 |
FeaturesDict({
'episode_metadata': FeaturesDict({
'file_path': Text(shape=(), dtype=string),
}),
'steps': Dataset({
'action': Tensor(shape=(7,), dtype=float32, description=Robot action, consists of [3x robot EEF position, 3x robot EEF orientation yaw/pitch/roll calculated with scipy Rotation.as_euler(="zxy") Class].),
'discount': Scalar(shape=(), dtype=float32, description=Discount if provided, default to 1.),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'language_embedding': Tensor(shape=(512,), dtype=float32, description=Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5),
'language_instruction': Text(shape=(), dtype=string),
'observation': FeaturesDict({
'image': Image(shape=(480, 640, 3), dtype=uint8, description=Main camera RGB observation.),
'state': Tensor(shape=(12,), dtype=float32, description=Robot state, consists of [3x robot EEF position, 3x robot EEF orientation yaw/pitch/roll calculated with scipy Rotation.as_euler("zxy") Class, 6x robot EEF wrench].),
}),
'reward': Scalar(shape=(), dtype=float32, description=Reward if provided, 1 on final step for demos.),
}),
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
episode_metadata |
FeaturesDict |
|
|
|
episode_metadata/file_path |
Text |
|
string |
Path to the original data file. |
steps |
Dataset |
|
|
|
steps/action |
Tensor |
(7,) |
float32 |
Robot action, consists of [3x robot EEF position, 3x robot EEF orientation yaw/pitch/roll calculated with scipy Rotation.as_euler(="zxy") Class]. |
steps/discount |
Scalar |
|
float32 |
Discount if provided, default to 1. |
steps/is_first |
Tensor |
|
bool |
|
steps/is_last |
Tensor |
|
bool |
|
steps/is_terminal |
Tensor |
|
bool |
|
steps/language_embedding |
Tensor |
(512,) |
float32 |
Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5 |
steps/language_instruction |
Text |
|
string |
Pour into the mug. |
steps/observation |
FeaturesDict |
|
|
|
steps/observation/image |
Image |
(480, 640, 3) |
uint8 |
Main camera RGB observation. |
steps/observation/state |
Tensor |
(12,) |
float32 |
Robot state, consists of [3x robot EEF position, 3x robot EEF orientation yaw/pitch/roll calculated with scipy Rotation.as_euler("zxy") Class, 6x robot EEF wrench]. |
steps/reward |
Scalar |
|
float32 |
Reward if provided, 1 on final step for demos. |
@article{padalkar2023guided,
title={A guided reinforcement learning approach using shared control templates for learning manipulation skills in the real world},
author={Padalkar, Abhishek and Quere, Gabriel and Raffin, Antonin and Silv{\'e}rio, Jo{\~a}o and Stulp, Freek},
journal={Research square preprint rs-3289569/v1},
year={2023}
}
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-09-03 UTC.
[null,null,["Last updated 2024-09-03 UTC."],[],[],null,["# dlr_sara_grid_clamp_converted_externally_to_rlds\n\n\u003cbr /\u003e\n\n- **Description**:\n\nplace grid clamp onto grids on table\n\n- **Homepage** :\n \u003chttps://www.researchsquare.com/article/rs-3289569/v1\u003e\n\n- **Source code** :\n [`tfds.robotics.rtx.DlrSaraGridClampConvertedExternallyToRlds`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/robotics/rtx/rtx.py)\n\n- **Versions**:\n\n - **`0.1.0`** (default): Initial release.\n- **Download size** : `Unknown size`\n\n- **Dataset size** : `1.65 GiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n No\n\n- **Splits**:\n\n| Split | Examples |\n|-----------|----------|\n| `'train'` | 107 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'episode_metadata': FeaturesDict({\n 'file_path': Text(shape=(), dtype=string),\n }),\n 'steps': Dataset({\n 'action': Tensor(shape=(7,), dtype=float32, description=Robot action, consists of [3x robot EEF position, 3x robot EEF orientation yaw/pitch/roll calculated with scipy Rotation.as_euler(=\"zxy\") Class].),\n 'discount': Scalar(shape=(), dtype=float32, description=Discount if provided, default to 1.),\n 'is_first': bool,\n 'is_last': bool,\n 'is_terminal': bool,\n 'language_embedding': Tensor(shape=(512,), dtype=float32, description=Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5),\n 'language_instruction': Text(shape=(), dtype=string),\n 'observation': FeaturesDict({\n 'image': Image(shape=(480, 640, 3), dtype=uint8, description=Main camera RGB observation.),\n 'state': Tensor(shape=(12,), dtype=float32, description=Robot state, consists of [3x robot EEF position, 3x robot EEF orientation yaw/pitch/roll calculated with scipy Rotation.as_euler(\"zxy\") Class, 6x robot EEF wrench].),\n }),\n 'reward': Scalar(shape=(), dtype=float32, description=Reward if provided, 1 on final step for demos.),\n }),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|----------------------------|--------------|---------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| | FeaturesDict | | | |\n| episode_metadata | FeaturesDict | | | |\n| episode_metadata/file_path | Text | | string | Path to the original data file. |\n| steps | Dataset | | | |\n| steps/action | Tensor | (7,) | float32 | Robot action, consists of \\[3x robot EEF position, 3x robot EEF orientation yaw/pitch/roll calculated with scipy Rotation.as_euler(=\"zxy\") Class\\]. |\n| steps/discount | Scalar | | float32 | Discount if provided, default to 1. |\n| steps/is_first | Tensor | | bool | |\n| steps/is_last | Tensor | | bool | |\n| steps/is_terminal | Tensor | | bool | |\n| steps/language_embedding | Tensor | (512,) | float32 | Kona language embedding. See \u003chttps://tfhub.dev/google/universal-sentence-encoder-large/5\u003e |\n| steps/language_instruction | Text | | string | Pour into the mug. |\n| steps/observation | FeaturesDict | | | |\n| steps/observation/image | Image | (480, 640, 3) | uint8 | Main camera RGB observation. |\n| steps/observation/state | Tensor | (12,) | float32 | Robot state, consists of \\[3x robot EEF position, 3x robot EEF orientation yaw/pitch/roll calculated with scipy Rotation.as_euler(\"zxy\") Class, 6x robot EEF wrench\\]. |\n| steps/reward | Scalar | | float32 | Reward if provided, 1 on final step for demos. |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `None`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n Not supported.\n\n- **Examples**\n ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @article{padalkar2023guided,\n title={A guided reinforcement learning approach using shared control templates for learning manipulation skills in the real world},\n author={Padalkar, Abhishek and Quere, Gabriel and Raffin, Antonin and Silv{\\'e}rio, Jo{\\~a}o and Stulp, Freek},\n journal={Research square preprint rs-3289569/v1},\n year={2023}\n }"]]