eraser_multi_rc
Stay organized with collections
Save and categorize content based on your preferences.
Eraser Multi RC is a dataset for queries over multi-line passages, along with
answers and a rationalte. Each example in this dataset has the following 5 parts
- A Mutli-line Passage 2. A Query about the passage 3. An Answer to the query
- A Classification as to whether the answer is right or wrong 5. An Explanation
justifying the classification
Split |
Examples |
'test' |
4,848 |
'train' |
24,029 |
'validation' |
3,214 |
FeaturesDict({
'evidences': Sequence(Text(shape=(), dtype=string)),
'label': ClassLabel(shape=(), dtype=int64, num_classes=2),
'passage': Text(shape=(), dtype=string),
'query_and_answer': Text(shape=(), dtype=string),
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
evidences |
Sequence(Text) |
(None,) |
string |
|
label |
ClassLabel |
|
int64 |
|
passage |
Text |
|
string |
|
query_and_answer |
Text |
|
string |
|
@unpublished{eraser2019,
title = {ERASER: A Benchmark to Evaluate Rationalized NLP Models},
author = {Jay DeYoung and Sarthak Jain and Nazneen Fatema Rajani and Eric Lehman and Caiming Xiong and Richard Socher and Byron C. Wallace}
}
@inproceedings{MultiRC2018,
author = {Daniel Khashabi and Snigdha Chaturvedi and Michael Roth and Shyam Upadhyay and Dan Roth},
title = {Looking Beyond the Surface:A Challenge Set for Reading Comprehension over Multiple Sentences},
booktitle = {NAACL},
year = {2018}
}
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2022-12-06 UTC.
[null,null,["Last updated 2022-12-06 UTC."],[],[],null,["# eraser_multi_rc\n\n\u003cbr /\u003e\n\n- **Description**:\n\nEraser Multi RC is a dataset for queries over multi-line passages, along with\nanswers and a rationalte. Each example in this dataset has the following 5 parts\n\n1. A Mutli-line Passage 2. A Query about the passage 3. An Answer to the query\n2. A Classification as to whether the answer is right or wrong 5. An Explanation justifying the classification\n\n- **Additional Documentation** :\n [Explore on Papers With Code\n north_east](https://paperswithcode.com/dataset/multirc)\n\n- **Homepage** :\n \u003chttps://cogcomp.seas.upenn.edu/multirc/\u003e\n\n- **Source code** :\n [`tfds.text.EraserMultiRc`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/text/eraser_multi_rc.py)\n\n- **Versions**:\n\n - **`0.1.1`** (default): No release notes.\n- **Download size** : `1.59 MiB`\n\n- **Dataset size** : `62.59 MiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n Yes\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'test'` | 4,848 |\n| `'train'` | 24,029 |\n| `'validation'` | 3,214 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'evidences': Sequence(Text(shape=(), dtype=string)),\n 'label': ClassLabel(shape=(), dtype=int64, num_classes=2),\n 'passage': Text(shape=(), dtype=string),\n 'query_and_answer': Text(shape=(), dtype=string),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|------------------|----------------|---------|--------|-------------|\n| | FeaturesDict | | | |\n| evidences | Sequence(Text) | (None,) | string | |\n| label | ClassLabel | | int64 | |\n| passage | Text | | string | |\n| query_and_answer | Text | | string | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `None`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n Not supported.\n\n- **Examples**\n ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @unpublished{eraser2019,\n title = {ERASER: A Benchmark to Evaluate Rationalized NLP Models},\n author = {Jay DeYoung and Sarthak Jain and Nazneen Fatema Rajani and Eric Lehman and Caiming Xiong and Richard Socher and Byron C. Wallace}\n }\n @inproceedings{MultiRC2018,\n author = {Daniel Khashabi and Snigdha Chaturvedi and Michael Roth and Shyam Upadhyay and Dan Roth},\n title = {Looking Beyond the Surface:A Challenge Set for Reading Comprehension over Multiple Sentences},\n booktitle = {NAACL},\n year = {2018}\n }"]]