- Description:
 
Fashion-MNIST is a dataset of Zalando's article images consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grayscale image, associated with a label from 10 classes.
Additional Documentation: Explore on Papers With Code
Source code:
tfds.image_classification.FashionMNISTVersions:
3.0.1(default): No release notes.
Download size:
29.45 MiBDataset size:
36.42 MiBAuto-cached (documentation): Yes
Splits:
| Split | Examples | 
|---|---|
'test' | 
10,000 | 
'train' | 
60,000 | 
- Feature structure:
 
FeaturesDict({
    'image': Image(shape=(28, 28, 1), dtype=uint8),
    'label': ClassLabel(shape=(), dtype=int64, num_classes=10),
})
- Feature documentation:
 
| Feature | Class | Shape | Dtype | Description | 
|---|---|---|---|---|
| FeaturesDict | ||||
| image | Image | (28, 28, 1) | uint8 | |
| label | ClassLabel | int64 | 
Supervised keys (See
as_superviseddoc):('image', 'label')Figure (tfds.show_examples):

- Examples (tfds.as_dataframe):
 
- Citation:
 
@article{DBLP:journals/corr/abs-1708-07747,
  author    = {Han Xiao and
               Kashif Rasul and
               Roland Vollgraf},
  title     = {Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning
               Algorithms},
  journal   = {CoRR},
  volume    = {abs/1708.07747},
  year      = {2017},
  url       = {http://arxiv.org/abs/1708.07747},
  archivePrefix = {arXiv},
  eprint    = {1708.07747},
  timestamp = {Mon, 13 Aug 2018 16:47:27 +0200},
  biburl    = {https://dblp.org/rec/bib/journals/corr/abs-1708-07747},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}