- Description:
GAP is a gender-balanced dataset containing 8,908 coreference-labeled pairs of (ambiguous pronoun, antecedent name), sampled from Wikipedia and released by Google AI Language for the evaluation of coreference resolution in practical applications.
Additional Documentation: Explore on Papers With Code
Homepage: https://github.com/google-research-datasets/gap-coreference
Source code:
tfds.text.GapVersions:
0.1.0: Initial release.0.1.1(default): Fixes parsing of boolean fieldA-corefandB-coref.
Download size:
2.29 MiBDataset size:
2.96 MiBAuto-cached (documentation): Yes
Splits:
| Split | Examples |
|---|---|
'test' |
2,000 |
'train' |
2,000 |
'validation' |
454 |
- Feature structure:
FeaturesDict({
'A': Text(shape=(), dtype=string),
'A-coref': bool,
'A-offset': int32,
'B': Text(shape=(), dtype=string),
'B-coref': bool,
'B-offset': int32,
'ID': Text(shape=(), dtype=string),
'Pronoun': Text(shape=(), dtype=string),
'Pronoun-offset': int32,
'Text': Text(shape=(), dtype=string),
'URL': Text(shape=(), dtype=string),
})
- Feature documentation:
| Feature | Class | Shape | Dtype | Description |
|---|---|---|---|---|
| FeaturesDict | ||||
| A | Text | string | ||
| A-coref | Tensor | bool | ||
| A-offset | Tensor | int32 | ||
| B | Text | string | ||
| B-coref | Tensor | bool | ||
| B-offset | Tensor | int32 | ||
| ID | Text | string | ||
| Pronoun | Text | string | ||
| Pronoun-offset | Tensor | int32 | ||
| Text | Text | string | ||
| URL | Text | string |
Supervised keys (See
as_superviseddoc):NoneFigure (tfds.show_examples): Not supported.
Examples (tfds.as_dataframe):
- Citation:
@article{DBLP:journals/corr/abs-1810-05201,
author = {Kellie Webster and
Marta Recasens and
Vera Axelrod and
Jason Baldridge},
title = {Mind the {GAP:} {A} Balanced Corpus of Gendered Ambiguous Pronouns},
journal = {CoRR},
volume = {abs/1810.05201},
year = {2018},
url = {http://arxiv.org/abs/1810.05201},
archivePrefix = {arXiv},
eprint = {1810.05201},
timestamp = {Tue, 30 Oct 2018 20:39:56 +0100},
biburl = {https://dblp.org/rec/bib/journals/corr/abs-1810-05201},
bibsource = {dblp computer science bibliography, https://dblp.org}
}