iamlab_cmu_pickup_insert_converted_externally_to_rlds
Stay organized with collections
Save and categorize content based on your preferences.
Franka picking objects and insertion tasks
Split |
Examples |
'train' |
631 |
FeaturesDict({
'episode_metadata': FeaturesDict({
'file_path': Text(shape=(), dtype=string),
}),
'steps': Dataset({
'action': Tensor(shape=(8,), dtype=float32, description=Robot action, consists of [3x end-effector position, 4x end-effector quaternion, 1x gripper open/close].),
'discount': Scalar(shape=(), dtype=float32, description=Discount if provided, default to 1.),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'language_embedding': Tensor(shape=(512,), dtype=float32, description=Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5),
'language_instruction': Text(shape=(), dtype=string),
'observation': FeaturesDict({
'image': Image(shape=(360, 640, 3), dtype=uint8, description=Main camera RGB observation.),
'state': Tensor(shape=(20,), dtype=float32, description=Robot state, consists of [7x robot joint angles, 1x gripper status, 6x joint torques, 6x end-effector force].),
'wrist_image': Image(shape=(240, 320, 3), dtype=uint8, description=Wrist camera RGB observation.),
}),
'reward': Scalar(shape=(), dtype=float32, description=Reward if provided, 1 on final step for demos.),
}),
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
episode_metadata |
FeaturesDict |
|
|
|
episode_metadata/file_path |
Text |
|
string |
Path to the original data file. |
steps |
Dataset |
|
|
|
steps/action |
Tensor |
(8,) |
float32 |
Robot action, consists of [3x end-effector position, 4x end-effector quaternion, 1x gripper open/close]. |
steps/discount |
Scalar |
|
float32 |
Discount if provided, default to 1. |
steps/is_first |
Tensor |
|
bool |
|
steps/is_last |
Tensor |
|
bool |
|
steps/is_terminal |
Tensor |
|
bool |
|
steps/language_embedding |
Tensor |
(512,) |
float32 |
Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5 |
steps/language_instruction |
Text |
|
string |
Language Instruction. |
steps/observation |
FeaturesDict |
|
|
|
steps/observation/image |
Image |
(360, 640, 3) |
uint8 |
Main camera RGB observation. |
steps/observation/state |
Tensor |
(20,) |
float32 |
Robot state, consists of [7x robot joint angles, 1x gripper status, 6x joint torques, 6x end-effector force]. |
steps/observation/wrist_image |
Image |
(240, 320, 3) |
uint8 |
Wrist camera RGB observation. |
steps/reward |
Scalar |
|
float32 |
Reward if provided, 1 on final step for demos. |
@inproceedings{
saxena2023multiresolution,
title={Multi-Resolution Sensing for Real-Time Control with Vision-Language Models},
author={Saumya Saxena and Mohit Sharma and Oliver Kroemer},
booktitle={7th Annual Conference on Robot Learning},
year={2023},
url={https://openreview.net/forum?id=WuBv9-IGDUA}
}
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-09-03 UTC.
[null,null,["Last updated 2024-09-03 UTC."],[],[],null,["# iamlab_cmu_pickup_insert_converted_externally_to_rlds\n\n\u003cbr /\u003e\n\n- **Description**:\n\nFranka picking objects and insertion tasks\n\n- **Homepage** :\n \u003chttps://openreview.net/forum?id=WuBv9-IGDUA\u003e\n\n- **Source code** :\n [`tfds.robotics.rtx.IamlabCmuPickupInsertConvertedExternallyToRlds`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/robotics/rtx/rtx.py)\n\n- **Versions**:\n\n - **`0.1.0`** (default): Initial release.\n- **Download size** : `Unknown size`\n\n- **Dataset size** : `50.29 GiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n No\n\n- **Splits**:\n\n| Split | Examples |\n|-----------|----------|\n| `'train'` | 631 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'episode_metadata': FeaturesDict({\n 'file_path': Text(shape=(), dtype=string),\n }),\n 'steps': Dataset({\n 'action': Tensor(shape=(8,), dtype=float32, description=Robot action, consists of [3x end-effector position, 4x end-effector quaternion, 1x gripper open/close].),\n 'discount': Scalar(shape=(), dtype=float32, description=Discount if provided, default to 1.),\n 'is_first': bool,\n 'is_last': bool,\n 'is_terminal': bool,\n 'language_embedding': Tensor(shape=(512,), dtype=float32, description=Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5),\n 'language_instruction': Text(shape=(), dtype=string),\n 'observation': FeaturesDict({\n 'image': Image(shape=(360, 640, 3), dtype=uint8, description=Main camera RGB observation.),\n 'state': Tensor(shape=(20,), dtype=float32, description=Robot state, consists of [7x robot joint angles, 1x gripper status, 6x joint torques, 6x end-effector force].),\n 'wrist_image': Image(shape=(240, 320, 3), dtype=uint8, description=Wrist camera RGB observation.),\n }),\n 'reward': Scalar(shape=(), dtype=float32, description=Reward if provided, 1 on final step for demos.),\n }),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|-------------------------------|--------------|---------------|---------|-----------------------------------------------------------------------------------------------------------------|\n| | FeaturesDict | | | |\n| episode_metadata | FeaturesDict | | | |\n| episode_metadata/file_path | Text | | string | Path to the original data file. |\n| steps | Dataset | | | |\n| steps/action | Tensor | (8,) | float32 | Robot action, consists of \\[3x end-effector position, 4x end-effector quaternion, 1x gripper open/close\\]. |\n| steps/discount | Scalar | | float32 | Discount if provided, default to 1. |\n| steps/is_first | Tensor | | bool | |\n| steps/is_last | Tensor | | bool | |\n| steps/is_terminal | Tensor | | bool | |\n| steps/language_embedding | Tensor | (512,) | float32 | Kona language embedding. See \u003chttps://tfhub.dev/google/universal-sentence-encoder-large/5\u003e |\n| steps/language_instruction | Text | | string | Language Instruction. |\n| steps/observation | FeaturesDict | | | |\n| steps/observation/image | Image | (360, 640, 3) | uint8 | Main camera RGB observation. |\n| steps/observation/state | Tensor | (20,) | float32 | Robot state, consists of \\[7x robot joint angles, 1x gripper status, 6x joint torques, 6x end-effector force\\]. |\n| steps/observation/wrist_image | Image | (240, 320, 3) | uint8 | Wrist camera RGB observation. |\n| steps/reward | Scalar | | float32 | Reward if provided, 1 on final step for demos. |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `None`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n Not supported.\n\n- **Examples**\n ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @inproceedings{\n saxena2023multiresolution,\n title={Multi-Resolution Sensing for Real-Time Control with Vision-Language Models},\n author={Saumya Saxena and Mohit Sharma and Oliver Kroemer},\n booktitle={7th Annual Conference on Robot Learning},\n year={2023},\n url={https://openreview.net/forum?id=WuBv9-IGDUA}\n }"]]