- Description:
The LostAndFound Dataset addresses the problem of detecting unexpected small obstacles on the road often caused by lost cargo. The dataset comprises 112 stereo video sequences with 2104 annotated frames (picking roughly every tenth frame from the recorded data).
The dataset is designed analogous to the 'Cityscapes' dataset. The datset provides: - stereo image pairs in either 8 or 16 bit color resolution - precomputed disparity maps - coarse semantic labels for objects and street
Descriptions of the labels are given here: http://www.6d-vision.com/laf_table.pdf
Additional Documentation: Explore on Papers With Code
Source code:
tfds.datasets.lost_and_found.Builder
Versions:
1.0.0
(default): No release notes.
Auto-cached (documentation): No
Splits:
Split | Examples |
---|---|
'test' |
1,203 |
'train' |
1,036 |
Supervised keys (See
as_supervised
doc):None
Figure (tfds.show_examples): Not supported.
Citation:
@inproceedings{pinggera2016lost,
title={Lost and found: detecting small road hazards for self-driving vehicles},
author={Pinggera, Peter and Ramos, Sebastian and Gehrig, Stefan and Franke, Uwe and Rother, Carsten and Mester, Rudolf},
booktitle={2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
year={2016}
}
lost_and_found/semantic_segmentation (default config)
Config description: Lost and Found semantic segmentation dataset.
Download size:
5.44 GiB
Dataset size:
5.42 GiB
Feature structure:
FeaturesDict({
'image_id': Text(shape=(), dtype=string),
'image_left': Image(shape=(1024, 2048, 3), dtype=uint8),
'segmentation_label': Image(shape=(1024, 2048, 1), dtype=uint8),
})
- Feature documentation:
Feature | Class | Shape | Dtype | Description |
---|---|---|---|---|
FeaturesDict | ||||
image_id | Text | string | ||
image_left | Image | (1024, 2048, 3) | uint8 | |
segmentation_label | Image | (1024, 2048, 1) | uint8 |
- Examples (tfds.as_dataframe):
lost_and_found/stereo_disparity
Config description: Lost and Found stereo images and disparity maps.
Download size:
12.16 GiB
Dataset size:
12.22 GiB
Feature structure:
FeaturesDict({
'disparity_map': Image(shape=(1024, 2048, 1), dtype=uint8),
'image_id': Text(shape=(), dtype=string),
'image_left': Image(shape=(1024, 2048, 3), dtype=uint8),
'image_right': Image(shape=(1024, 2048, 3), dtype=uint8),
})
- Feature documentation:
Feature | Class | Shape | Dtype | Description |
---|---|---|---|---|
FeaturesDict | ||||
disparity_map | Image | (1024, 2048, 1) | uint8 | |
image_id | Text | string | ||
image_left | Image | (1024, 2048, 3) | uint8 | |
image_right | Image | (1024, 2048, 3) | uint8 |
- Examples (tfds.as_dataframe):
lost_and_found/full
Config description: Full Lost and Found dataset.
Download size:
12.19 GiB
Dataset size:
12.25 GiB
Feature structure:
FeaturesDict({
'disparity_map': Image(shape=(1024, 2048, 1), dtype=uint8),
'image_id': Text(shape=(), dtype=string),
'image_left': Image(shape=(1024, 2048, 3), dtype=uint8),
'image_right': Image(shape=(1024, 2048, 3), dtype=uint8),
'instance_id': Image(shape=(1024, 2048, 1), dtype=uint8),
'segmentation_label': Image(shape=(1024, 2048, 1), dtype=uint8),
})
- Feature documentation:
Feature | Class | Shape | Dtype | Description |
---|---|---|---|---|
FeaturesDict | ||||
disparity_map | Image | (1024, 2048, 1) | uint8 | |
image_id | Text | string | ||
image_left | Image | (1024, 2048, 3) | uint8 | |
image_right | Image | (1024, 2048, 3) | uint8 | |
instance_id | Image | (1024, 2048, 1) | uint8 | |
segmentation_label | Image | (1024, 2048, 1) | uint8 |
- Examples (tfds.as_dataframe):
lost_and_found/full_16bit
Config description: Full Lost and Found dataset.
Download size:
34.90 GiB
Dataset size:
35.05 GiB
Feature structure:
FeaturesDict({
'disparity_map': Image(shape=(1024, 2048, 1), dtype=uint8),
'image_id': Text(shape=(), dtype=string),
'image_left': Image(shape=(1024, 2048, 3), dtype=uint8),
'image_right': Image(shape=(1024, 2048, 3), dtype=uint8),
'instance_id': Image(shape=(1024, 2048, 1), dtype=uint8),
'segmentation_label': Image(shape=(1024, 2048, 1), dtype=uint8),
})
- Feature documentation:
Feature | Class | Shape | Dtype | Description |
---|---|---|---|---|
FeaturesDict | ||||
disparity_map | Image | (1024, 2048, 1) | uint8 | |
image_id | Text | string | ||
image_left | Image | (1024, 2048, 3) | uint8 | |
image_right | Image | (1024, 2048, 3) | uint8 | |
instance_id | Image | (1024, 2048, 1) | uint8 | |
segmentation_label | Image | (1024, 2048, 1) | uint8 |
- Examples (tfds.as_dataframe):