patch_camelyon
Stay organized with collections
Save and categorize content based on your preferences.
The PatchCamelyon benchmark is a new and challenging image classification
dataset. It consists of 327.680 color images (96 x 96px) extracted from
histopathologic scans of lymph node sections. Each image is annoted with a
binary label indicating presence of metastatic tissue. PCam provides a new
benchmark for machine learning models: bigger than CIFAR10, smaller than
Imagenet, trainable on a single GPU.
Split |
Examples |
'test' |
32,768 |
'train' |
262,144 |
'validation' |
32,768 |
FeaturesDict({
'id': Text(shape=(), dtype=string),
'image': Image(shape=(96, 96, 3), dtype=uint8),
'label': ClassLabel(shape=(), dtype=int64, num_classes=2),
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
id |
Text |
|
string |
|
image |
Image |
(96, 96, 3) |
uint8 |
|
label |
ClassLabel |
|
int64 |
|

@misc{b_s_veeling_j_linmans_j_winkens_t_cohen_2018_2546921,
author = {B. S. Veeling, J. Linmans, J. Winkens, T. Cohen, M. Welling},
title = {Rotation Equivariant CNNs for Digital Pathology},
month = sep,
year = 2018,
doi = {10.1007/978-3-030-00934-2_24},
url = {https://doi.org/10.1007/978-3-030-00934-2_24}
}
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-06-01 UTC.
[null,null,["Last updated 2024-06-01 UTC."],[],[],null,["# patch_camelyon\n\n\u003cbr /\u003e\n\n- **Description**:\n\nThe PatchCamelyon benchmark is a new and challenging image classification\ndataset. It consists of 327.680 color images (96 x 96px) extracted from\nhistopathologic scans of lymph node sections. Each image is annoted with a\nbinary label indicating presence of metastatic tissue. PCam provides a new\nbenchmark for machine learning models: bigger than CIFAR10, smaller than\nImagenet, trainable on a single GPU.\n\n- **Additional Documentation** :\n [Explore on Papers With Code\n north_east](https://paperswithcode.com/dataset/pcam)\n\n- **Homepage** :\n \u003chttps://patchcamelyon.grand-challenge.org/\u003e\n\n- **Source code** :\n [`tfds.datasets.patch_camelyon.Builder`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/datasets/patch_camelyon/patch_camelyon_dataset_builder.py)\n\n- **Versions**:\n\n - **`2.0.0`** (default): New split API (\u003chttps://tensorflow.org/datasets/splits\u003e)\n- **Download size** : `7.48 GiB`\n\n- **Dataset size** : `7.06 GiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n No\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'test'` | 32,768 |\n| `'train'` | 262,144 |\n| `'validation'` | 32,768 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'id': Text(shape=(), dtype=string),\n 'image': Image(shape=(96, 96, 3), dtype=uint8),\n 'label': ClassLabel(shape=(), dtype=int64, num_classes=2),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|---------|--------------|-------------|--------|-------------|\n| | FeaturesDict | | | |\n| id | Text | | string | |\n| image | Image | (96, 96, 3) | uint8 | |\n| label | ClassLabel | | int64 | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `('image', 'label')`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @misc{b_s_veeling_j_linmans_j_winkens_t_cohen_2018_2546921,\n author = {B. S. Veeling, J. Linmans, J. Winkens, T. Cohen, M. Welling},\n title = {Rotation Equivariant CNNs for Digital Pathology},\n month = sep,\n year = 2018,\n doi = {10.1007/978-3-030-00934-2_24},\n url = {https://doi.org/10.1007/978-3-030-00934-2_24}\n }"]]