- Description:
The Places365-Standard dataset contains 1.8 million train images from 365 scene categories, which are used to train the Places365 CNNs. There are 50 images per category in the validation set and 900 images per category in the testing set.
Additional Documentation: Explore on Papers With Code
Homepage: http://places2.csail.mit.edu/
Source code:
tfds.datasets.places365_small.Builder
Versions:
2.1.0
(default): Changed the example keys in order to ease integration with KYD.
Download size:
29.27 GiB
Dataset size:
27.85 GiB
Auto-cached (documentation): No
Splits:
Split | Examples |
---|---|
'test' |
328,500 |
'train' |
1,803,460 |
'validation' |
36,500 |
- Feature structure:
FeaturesDict({
'filename': Text(shape=(), dtype=string),
'image': Image(shape=(256, 256, 3), dtype=uint8),
'label': ClassLabel(shape=(), dtype=int64, num_classes=365),
})
- Feature documentation:
Feature | Class | Shape | Dtype | Description |
---|---|---|---|---|
FeaturesDict | ||||
filename | Text | string | ||
image | Image | (256, 256, 3) | uint8 | |
label | ClassLabel | int64 |
Supervised keys (See
as_supervised
doc):('image', 'label', 'filename')
Figure (tfds.show_examples):
- Examples (tfds.as_dataframe):
- Citation:
@article{zhou2017places,
title={Places: A 10 million Image Database for Scene Recognition},
author={Zhou, Bolei and Lapedriza, Agata and Khosla, Aditya and Oliva, Aude and Torralba, Antonio},
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
year={2017},
publisher={IEEE}
}