smallnorb
Stay organized with collections
Save and categorize content based on your preferences.
This database is intended for experiments in 3D object recognition from shape.
It contains images of 50 toys belonging to 5 generic categories: four-legged
animals, human figures, airplanes, trucks, and cars. The objects were imaged by
two cameras under 6 lighting conditions, 9 elevations (30 to 70 degrees every 5
degrees), and 18 azimuths (0 to 340 every 20 degrees).
The training set is composed of 5 instances of each category (instances 4, 6, 7,
8 and 9), and the test set of the remaining 5 instances (instances 0, 1, 2, 3,
and 5).
Split |
Examples |
'test' |
24,300 |
'train' |
24,300 |
FeaturesDict({
'image': Image(shape=(96, 96, 1), dtype=uint8),
'image2': Image(shape=(96, 96, 1), dtype=uint8),
'instance': ClassLabel(shape=(), dtype=int64, num_classes=10),
'label_azimuth': ClassLabel(shape=(), dtype=int64, num_classes=18),
'label_category': ClassLabel(shape=(), dtype=int64, num_classes=5),
'label_elevation': ClassLabel(shape=(), dtype=int64, num_classes=9),
'label_lighting': ClassLabel(shape=(), dtype=int64, num_classes=6),
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
image |
Image |
(96, 96, 1) |
uint8 |
|
image2 |
Image |
(96, 96, 1) |
uint8 |
|
instance |
ClassLabel |
|
int64 |
|
label_azimuth |
ClassLabel |
|
int64 |
|
label_category |
ClassLabel |
|
int64 |
|
label_elevation |
ClassLabel |
|
int64 |
|
label_lighting |
ClassLabel |
|
int64 |
|
@article{LeCun2004LearningMF,
title={Learning methods for generic object recognition with invariance to pose and lighting},
author={Yann LeCun and Fu Jie Huang and L{\'e}on Bottou},
journal={Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition},
year={2004},
volume={2},
pages={II-104 Vol.2}
}
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-06-01 UTC.
[null,null,["Last updated 2024-06-01 UTC."],[],[],null,["# smallnorb\n\n\u003cbr /\u003e\n\n- **Description**:\n\nThis database is intended for experiments in 3D object recognition from shape.\nIt contains images of 50 toys belonging to 5 generic categories: four-legged\nanimals, human figures, airplanes, trucks, and cars. The objects were imaged by\ntwo cameras under 6 lighting conditions, 9 elevations (30 to 70 degrees every 5\ndegrees), and 18 azimuths (0 to 340 every 20 degrees).\n\nThe training set is composed of 5 instances of each category (instances 4, 6, 7,\n8 and 9), and the test set of the remaining 5 instances (instances 0, 1, 2, 3,\nand 5).\n\n- **Additional Documentation** :\n [Explore on Papers With Code\n north_east](https://paperswithcode.com/dataset/smallnorb)\n\n- **Homepage** :\n [https://cs.nyu.edu/\\~ylclab/data/norb-v1.0-small/](https://cs.nyu.edu/%7Eylclab/data/norb-v1.0-small/)\n\n- **Source code** :\n [`tfds.datasets.smallnorb.Builder`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/datasets/smallnorb/smallnorb_dataset_builder.py)\n\n- **Versions**:\n\n - **`2.0.0`** (default): New split API (\u003chttps://tensorflow.org/datasets/splits\u003e)\n - `2.1.0`: No release notes.\n- **Download size** : `250.60 MiB`\n\n- **Dataset size** : `Unknown size`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n Unknown\n\n- **Splits**:\n\n| Split | Examples |\n|-----------|----------|\n| `'test'` | 24,300 |\n| `'train'` | 24,300 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'image': Image(shape=(96, 96, 1), dtype=uint8),\n 'image2': Image(shape=(96, 96, 1), dtype=uint8),\n 'instance': ClassLabel(shape=(), dtype=int64, num_classes=10),\n 'label_azimuth': ClassLabel(shape=(), dtype=int64, num_classes=18),\n 'label_category': ClassLabel(shape=(), dtype=int64, num_classes=5),\n 'label_elevation': ClassLabel(shape=(), dtype=int64, num_classes=9),\n 'label_lighting': ClassLabel(shape=(), dtype=int64, num_classes=6),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|-----------------|--------------|-------------|-------|-------------|\n| | FeaturesDict | | | |\n| image | Image | (96, 96, 1) | uint8 | |\n| image2 | Image | (96, 96, 1) | uint8 | |\n| instance | ClassLabel | | int64 | |\n| label_azimuth | ClassLabel | | int64 | |\n| label_category | ClassLabel | | int64 | |\n| label_elevation | ClassLabel | | int64 | |\n| label_lighting | ClassLabel | | int64 | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `('image', 'label_category')`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n Not supported.\n\n- **Examples**\n ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @article{LeCun2004LearningMF,\n title={Learning methods for generic object recognition with invariance to pose and lighting},\n author={Yann LeCun and Fu Jie Huang and L{\\'e}on Bottou},\n journal={Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition},\n year={2004},\n volume={2},\n pages={II-104 Vol.2}\n }"]]