spoc_robot

Dividir Exemplos
'train' 212.043
'val' 21.108
  • Estrutura de recursos :
FeaturesDict({
    'episode_metadata': FeaturesDict({
        'file_path': string,
        'task_target_split': string,
        'task_type': string,
    }),
    'steps': Dataset({
        'action': Tensor(shape=(9,), dtype=float32),
        'discount': Scalar(shape=(), dtype=float32),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'language_instruction': string,
        'observation': FeaturesDict({
            'an_object_is_in_hand': Scalar(shape=(), dtype=bool),
            'house_index': Scalar(shape=(), dtype=int64),
            'hypothetical_task_success': Scalar(shape=(), dtype=bool),
            'image': Image(shape=(224, 384, 3), dtype=uint8),
            'image_manipulation': Image(shape=(224, 384, 3), dtype=uint8),
            'last_action_is_random': Scalar(shape=(), dtype=bool),
            'last_action_str': string,
            'last_action_success': Scalar(shape=(), dtype=bool),
            'last_agent_location': Tensor(shape=(6,), dtype=float32),
            'manip_object_bbox': Tensor(shape=(10,), dtype=float32),
            'minimum_l2_target_distance': Scalar(shape=(), dtype=float32),
            'minimum_visible_target_alignment': Scalar(shape=(), dtype=float32),
            'nav_object_bbox': Tensor(shape=(10,), dtype=float32),
            'relative_arm_location_metadata': Tensor(shape=(4,), dtype=float32),
            'room_current_seen': Scalar(shape=(), dtype=bool),
            'rooms_seen': Scalar(shape=(), dtype=int64),
            'visible_target_4m_count': Scalar(shape=(), dtype=int64),
        }),
        'reward': Scalar(shape=(), dtype=float32),
    }),
})
  • Documentação de recursos :
Recurso Aula Forma Tipo D Descrição
RecursosDict
episódio_metadados RecursosDict
episódio_metadados/caminho_do_arquivo Tensor corda
episódio_metadata/task_target_split Tensor corda
episódio_metadata/task_type Tensor corda
passos Conjunto de dados
etapas/ação Tensor (9,) float32
passos/desconto Escalar float32
passos/é_primeiro Tensor bool
passos/é_último Tensor bool
etapas/is_terminal Tensor bool
etapas/instrução_idioma Tensor corda
etapas/observação RecursosDict
etapas/observação/um_objeto_está_em_mão Escalar bool
etapas/observação/house_index Escalar int64
etapas/observação/hipotética_tarefa_sucesso Escalar bool
passos/observação/imagem Imagem (224, 384, 3) uint8
etapas/observação/manipulação de imagem Imagem (224, 384, 3) uint8
etapas/observação/last_action_is_random Escalar bool
etapas/observação/last_action_str Tensor corda
etapas/observação/last_action_success Escalar bool
etapas/observação/last_agent_location Tensor (6,) float32
etapas/observação/manip_object_bbox Tensor (10,) float32
passos/observação/mínimo_l2_target_distance Escalar float32
etapas/observação/mínimo_visível_target_alignment Escalar float32
etapas/observação/nav_object_bbox Tensor (10,) float32
etapas/observação/relative_arm_location_metadata Tensor (4,) float32
etapas/observação/room_current_seen Escalar bool
passos/observação/quartos_vistos Escalar int64
passos/observação/visible_target_4m_count Escalar int64
passos/recompensa Escalar float32
@article{spoc2023,
    author    = {Kiana Ehsani, Tanmay Gupta, Rose Hendrix, Jordi Salvador, Luca Weihs, Kuo-Hao Zeng, Kunal Pratap Singh, Yejin Kim, Winson Han, Alvaro Herrasti, Ranjay Krishna, Dustin Schwenk, Eli VanderBilt, Aniruddha Kembhavi},
    title     = {Imitating Shortest Paths in Simulation Enables Effective Navigation and Manipulation in the Real World},
    journal   = {arXiv},
    year      = {2023},
    eprint    = {2312.02976},
}