spoc_robot
Stay organized with collections
Save and categorize content based on your preferences.
Split |
Examples |
'train' |
212,043 |
'val' |
21,108 |
FeaturesDict({
'episode_metadata': FeaturesDict({
'file_path': string,
'task_target_split': string,
'task_type': string,
}),
'steps': Dataset({
'action': Tensor(shape=(9,), dtype=float32),
'discount': Scalar(shape=(), dtype=float32),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'language_instruction': string,
'observation': FeaturesDict({
'an_object_is_in_hand': Scalar(shape=(), dtype=bool),
'house_index': Scalar(shape=(), dtype=int64),
'hypothetical_task_success': Scalar(shape=(), dtype=bool),
'image': Image(shape=(224, 384, 3), dtype=uint8),
'image_manipulation': Image(shape=(224, 384, 3), dtype=uint8),
'last_action_is_random': Scalar(shape=(), dtype=bool),
'last_action_str': string,
'last_action_success': Scalar(shape=(), dtype=bool),
'last_agent_location': Tensor(shape=(6,), dtype=float32),
'manip_object_bbox': Tensor(shape=(10,), dtype=float32),
'minimum_l2_target_distance': Scalar(shape=(), dtype=float32),
'minimum_visible_target_alignment': Scalar(shape=(), dtype=float32),
'nav_object_bbox': Tensor(shape=(10,), dtype=float32),
'relative_arm_location_metadata': Tensor(shape=(4,), dtype=float32),
'room_current_seen': Scalar(shape=(), dtype=bool),
'rooms_seen': Scalar(shape=(), dtype=int64),
'visible_target_4m_count': Scalar(shape=(), dtype=int64),
}),
'reward': Scalar(shape=(), dtype=float32),
}),
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
episode_metadata |
FeaturesDict |
|
|
|
episode_metadata/file_path |
Tensor |
|
string |
|
episode_metadata/task_target_split |
Tensor |
|
string |
|
episode_metadata/task_type |
Tensor |
|
string |
|
steps |
Dataset |
|
|
|
steps/action |
Tensor |
(9,) |
float32 |
|
steps/discount |
Scalar |
|
float32 |
|
steps/is_first |
Tensor |
|
bool |
|
steps/is_last |
Tensor |
|
bool |
|
steps/is_terminal |
Tensor |
|
bool |
|
steps/language_instruction |
Tensor |
|
string |
|
steps/observation |
FeaturesDict |
|
|
|
steps/observation/an_object_is_in_hand |
Scalar |
|
bool |
|
steps/observation/house_index |
Scalar |
|
int64 |
|
steps/observation/hypothetical_task_success |
Scalar |
|
bool |
|
steps/observation/image |
Image |
(224, 384, 3) |
uint8 |
|
steps/observation/image_manipulation |
Image |
(224, 384, 3) |
uint8 |
|
steps/observation/last_action_is_random |
Scalar |
|
bool |
|
steps/observation/last_action_str |
Tensor |
|
string |
|
steps/observation/last_action_success |
Scalar |
|
bool |
|
steps/observation/last_agent_location |
Tensor |
(6,) |
float32 |
|
steps/observation/manip_object_bbox |
Tensor |
(10,) |
float32 |
|
steps/observation/minimum_l2_target_distance |
Scalar |
|
float32 |
|
steps/observation/minimum_visible_target_alignment |
Scalar |
|
float32 |
|
steps/observation/nav_object_bbox |
Tensor |
(10,) |
float32 |
|
steps/observation/relative_arm_location_metadata |
Tensor |
(4,) |
float32 |
|
steps/observation/room_current_seen |
Scalar |
|
bool |
|
steps/observation/rooms_seen |
Scalar |
|
int64 |
|
steps/observation/visible_target_4m_count |
Scalar |
|
int64 |
|
steps/reward |
Scalar |
|
float32 |
|
@article{spoc2023,
author = {Kiana Ehsani, Tanmay Gupta, Rose Hendrix, Jordi Salvador, Luca Weihs, Kuo-Hao Zeng, Kunal Pratap Singh, Yejin Kim, Winson Han, Alvaro Herrasti, Ranjay Krishna, Dustin Schwenk, Eli VanderBilt, Aniruddha Kembhavi},
title = {Imitating Shortest Paths in Simulation Enables Effective Navigation and Manipulation in the Real World},
journal = {arXiv},
year = {2023},
eprint = {2312.02976},
}
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-12-11 UTC.
[null,null,["Last updated 2024-12-11 UTC."],[],[],null,["# spoc_robot\n\n\u003cbr /\u003e\n\n- **Description**:\n\n- **Homepage** : \u003chttps://spoc-robot.github.io/\u003e\n\n- **Source code** :\n [`tfds.robotics.rtx.SpocRobot`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/robotics/rtx/rtx.py)\n\n- **Versions**:\n\n - **`0.1.0`** (default): Initial release.\n- **Download size** : `Unknown size`\n\n- **Dataset size** : `771.61 GiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n No\n\n- **Splits**:\n\n| Split | Examples |\n|-----------|----------|\n| `'train'` | 212,043 |\n| `'val'` | 21,108 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'episode_metadata': FeaturesDict({\n 'file_path': string,\n 'task_target_split': string,\n 'task_type': string,\n }),\n 'steps': Dataset({\n 'action': Tensor(shape=(9,), dtype=float32),\n 'discount': Scalar(shape=(), dtype=float32),\n 'is_first': bool,\n 'is_last': bool,\n 'is_terminal': bool,\n 'language_instruction': string,\n 'observation': FeaturesDict({\n 'an_object_is_in_hand': Scalar(shape=(), dtype=bool),\n 'house_index': Scalar(shape=(), dtype=int64),\n 'hypothetical_task_success': Scalar(shape=(), dtype=bool),\n 'image': Image(shape=(224, 384, 3), dtype=uint8),\n 'image_manipulation': Image(shape=(224, 384, 3), dtype=uint8),\n 'last_action_is_random': Scalar(shape=(), dtype=bool),\n 'last_action_str': string,\n 'last_action_success': Scalar(shape=(), dtype=bool),\n 'last_agent_location': Tensor(shape=(6,), dtype=float32),\n 'manip_object_bbox': Tensor(shape=(10,), dtype=float32),\n 'minimum_l2_target_distance': Scalar(shape=(), dtype=float32),\n 'minimum_visible_target_alignment': Scalar(shape=(), dtype=float32),\n 'nav_object_bbox': Tensor(shape=(10,), dtype=float32),\n 'relative_arm_location_metadata': Tensor(shape=(4,), dtype=float32),\n 'room_current_seen': Scalar(shape=(), dtype=bool),\n 'rooms_seen': Scalar(shape=(), dtype=int64),\n 'visible_target_4m_count': Scalar(shape=(), dtype=int64),\n }),\n 'reward': Scalar(shape=(), dtype=float32),\n }),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|----------------------------------------------------|--------------|---------------|---------|-------------|\n| | FeaturesDict | | | |\n| episode_metadata | FeaturesDict | | | |\n| episode_metadata/file_path | Tensor | | string | |\n| episode_metadata/task_target_split | Tensor | | string | |\n| episode_metadata/task_type | Tensor | | string | |\n| steps | Dataset | | | |\n| steps/action | Tensor | (9,) | float32 | |\n| steps/discount | Scalar | | float32 | |\n| steps/is_first | Tensor | | bool | |\n| steps/is_last | Tensor | | bool | |\n| steps/is_terminal | Tensor | | bool | |\n| steps/language_instruction | Tensor | | string | |\n| steps/observation | FeaturesDict | | | |\n| steps/observation/an_object_is_in_hand | Scalar | | bool | |\n| steps/observation/house_index | Scalar | | int64 | |\n| steps/observation/hypothetical_task_success | Scalar | | bool | |\n| steps/observation/image | Image | (224, 384, 3) | uint8 | |\n| steps/observation/image_manipulation | Image | (224, 384, 3) | uint8 | |\n| steps/observation/last_action_is_random | Scalar | | bool | |\n| steps/observation/last_action_str | Tensor | | string | |\n| steps/observation/last_action_success | Scalar | | bool | |\n| steps/observation/last_agent_location | Tensor | (6,) | float32 | |\n| steps/observation/manip_object_bbox | Tensor | (10,) | float32 | |\n| steps/observation/minimum_l2_target_distance | Scalar | | float32 | |\n| steps/observation/minimum_visible_target_alignment | Scalar | | float32 | |\n| steps/observation/nav_object_bbox | Tensor | (10,) | float32 | |\n| steps/observation/relative_arm_location_metadata | Tensor | (4,) | float32 | |\n| steps/observation/room_current_seen | Scalar | | bool | |\n| steps/observation/rooms_seen | Scalar | | int64 | |\n| steps/observation/visible_target_4m_count | Scalar | | int64 | |\n| steps/reward | Scalar | | float32 | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `None`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n Not supported.\n\n- **Examples**\n ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @article{spoc2023,\n author = {Kiana Ehsani, Tanmay Gupta, Rose Hendrix, Jordi Salvador, Luca Weihs, Kuo-Hao Zeng, Kunal Pratap Singh, Yejin Kim, Winson Han, Alvaro Herrasti, Ranjay Krishna, Dustin Schwenk, Eli VanderBilt, Aniruddha Kembhavi},\n title = {Imitating Shortest Paths in Simulation Enables Effective Navigation and Manipulation in the Real World},\n journal = {arXiv},\n year = {2023},\n eprint = {2312.02976},\n }"]]