- Keterangan :
Tugas manipulasi meja Franka
Beranda : https://ut-austin-rpl.github.io/sirius/
Kode sumber :
tfds.robotics.rtx.AustinSiriusDatasetConvertedExternallyToRlds
Versi :
-
0.1.0
(default): Rilis awal.
-
Ukuran unduhan :
Unknown size
Ukuran kumpulan data :
6.55 GiB
Cache otomatis ( dokumentasi ): Tidak
Perpecahan :
Membelah | Contoh |
---|---|
'train' | 559 |
- Struktur fitur :
FeaturesDict({
'episode_metadata': FeaturesDict({
'file_path': Text(shape=(), dtype=string),
}),
'steps': Dataset({
'action': Tensor(shape=(7,), dtype=float32, description=Robot action, consists of [3x ee relative pos, 3x ee relative rotation, 1x gripper action].),
'action_mode': Tensor(shape=(1,), dtype=float32, description=Type of interaction. -1: initial human demonstration. 1: intervention. 0: autonomuos robot execution (includes pre-intervention class)),
'discount': Scalar(shape=(), dtype=float32, description=Discount if provided, default to 1.),
'intv_label': Tensor(shape=(1,), dtype=float32, description=Same as action_modes, except 15 timesteps preceding intervention are labeled as -10.),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'language_embedding': Tensor(shape=(512,), dtype=float32, description=Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5),
'language_instruction': Text(shape=(), dtype=string),
'observation': FeaturesDict({
'image': Image(shape=(84, 84, 3), dtype=uint8, description=Main camera RGB observation.),
'state': Tensor(shape=(8,), dtype=float32, description=Default robot state, consists of [7x robot joint state, 1x gripper state].),
'state_ee': Tensor(shape=(16,), dtype=float32, description=End-effector state, represented as 4x4 homogeneous transformation matrix of ee pose.),
'state_gripper': Tensor(shape=(1,), dtype=float32, description=Robot gripper opening width. Ranges between ~0 (closed) to ~0.077 (open)),
'state_joint': Tensor(shape=(7,), dtype=float32, description=Robot 7-dof joint information.),
'wrist_image': Image(shape=(84, 84, 3), dtype=uint8, description=Wrist camera RGB observation.),
}),
'reward': Scalar(shape=(), dtype=float32, description=Reward if provided, 1 on final step for demos.),
}),
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Tipe D | Keterangan |
---|---|---|---|---|
FiturDict | ||||
episode_metadata | FiturDict | |||
episode_metadata/file_path | Teks | rangkaian | Jalur ke file data asli. | |
tangga | Kumpulan data | |||
langkah/tindakan | Tensor | (7,) | float32 | Aksi robot, terdiri dari [3x ee pos relatif, 3x ee rotasi relatif, 1x aksi gripper]. |
langkah/mode_aksi | Tensor | (1,) | float32 | Jenis interaksi. -1: demonstrasi awal manusia. 1: intervensi. 0: eksekusi robot autonomuos (termasuk kelas pra-intervensi) |
langkah/diskon | Skalar | float32 | Diskon jika disediakan, defaultnya adalah 1. | |
langkah/intv_label | Tensor | (1,) | float32 | Sama seperti action_modes, kecuali 15 langkah waktu sebelum intervensi diberi label -10. |
langkah/adalah_pertama | Tensor | bodoh | ||
langkah/adalah_terakhir | Tensor | bodoh | ||
langkah/is_terminal | Tensor | bodoh | ||
langkah/bahasa_penyematan | Tensor | (512,) | float32 | Penyematan bahasa Kona. Lihat https://tfhub.dev/google/universal-sentence-encoder-large/5 |
langkah/bahasa_instruksi | Teks | rangkaian | Instruksi Bahasa. | |
langkah/pengamatan | FiturDict | |||
langkah/pengamatan/gambar | Gambar | (84, 84, 3) | uint8 | Pengamatan RGB kamera utama. |
langkah/pengamatan/keadaan | Tensor | (8,) | float32 | Status robot default, terdiri dari [7x status sambungan robot, 1x status gripper]. |
langkah/pengamatan/state_ee | Tensor | (16,) | float32 | Keadaan efektor akhir, direpresentasikan sebagai matriks transformasi homogen 4x4 dari pose ee. |
langkah/pengamatan/state_gripper | Tensor | (1,) | float32 | Lebar bukaan gripper robot. Berkisar antara ~0 (tertutup) hingga ~0,077 (terbuka) |
langkah/pengamatan/state_joint | Tensor | (7,) | float32 | Informasi gabungan Robot 7-dof. |
langkah/pengamatan/wrist_image | Gambar | (84, 84, 3) | uint8 | Pengamatan RGB kamera pergelangan tangan. |
langkah/hadiah | Skalar | float32 | Hadiah jika diberikan, 1 pada langkah terakhir untuk demo. |
Kunci yang diawasi (Lihat dokumen
as_supervised
):None
Gambar ( tfds.show_examples ): Tidak didukung.
Contoh ( tfds.as_dataframe ):
- Kutipan :
@inproceedings{liu2022robot,
title = {Robot Learning on the Job: Human-in-the-Loop Autonomy and Learning During Deployment},
author = {Huihan Liu and Soroush Nasiriany and Lance Zhang and Zhiyao Bao and Yuke Zhu},
booktitle = {Robotics: Science and Systems (RSS)},
year = {2023}
}