cifar100_n

  • Deskripsi :

Versi CIFAR-100 yang diberi label ulang dengan kesalahan anotasi manusia nyata. Untuk setiap pasangan (gambar, label) dalam rangkaian kereta CIFAR-100 asli, ini memberikan label tambahan yang diberikan oleh anotator manusia asli.

Kemudian ubah 'CIFAR-100_human_ordered.npy' menjadi file CSV 'CIFAR-100_human_annotations.csv'. Ini dapat dilakukan dengan kode berikut:

import numpy as np
from tensorflow_datasets.core.utils.lazy_imports_utils import pandas as pd
from tensorflow_datasets.core.utils.lazy_imports_utils import tensorflow as tf

human_labels_np_path
= '<local_path>/CIFAR-100_human_ordered.npy'
human_labels_csv_path
= '<local_path>/CIFAR-100_human_annotations.csv'

with tf.io.gfile.GFile(human_labels_np_path, "rb") as f:
  human_annotations
= np.load(f, allow_pickle=True)

df
= pd.DataFrame(human_annotations[()])

with tf.io.gfile.GFile(human_labels_csv_path, "w") as f:
  df
.to_csv(f, index=False)
Membelah Contoh
'test' 10.000
'train' 50.000
  • Struktur fitur :
FeaturesDict({
   
'coarse_label': ClassLabel(shape=(), dtype=int64, num_classes=20),
   
'id': Text(shape=(), dtype=string),
   
'image': Image(shape=(32, 32, 3), dtype=uint8),
   
'label': ClassLabel(shape=(), dtype=int64, num_classes=100),
   
'noise_label': ClassLabel(shape=(), dtype=int64, num_classes=100),
   
'worker_id': int64,
   
'worker_time': float32,
})
  • Dokumentasi fitur :
Fitur Kelas Membentuk Dtype Keterangan
fiturDict
label_kasar LabelKelas int64
Indo Teks rangkaian
gambar Gambar (32, 32, 3) uint8
label LabelKelas int64
noise_label LabelKelas int64
pekerja_id Tensor int64
waktu_pekerja Tensor float32

Visualisasi

  • Kutipan :
@inproceedings{wei2022learning,
  title
={Learning with Noisy Labels Revisited: A Study Using Real-World Human
 
Annotations},
  author
={Jiaheng Wei and Zhaowei Zhu and Hao Cheng and Tongliang Liu and Gang
 
Niu and Yang Liu},
  booktitle
={International Conference on Learning Representations},
  year
={2022},
  url
={https://openreview.net/forum?id=TBWA6PLJZQm}
}