• Description:

xArm short-horizon table-top tasks

Split Examples
'train' 14
  • Feature structure:
    'episode_metadata': FeaturesDict({
        'file_path': Text(shape=(), dtype=string),
    'steps': Dataset({
        'action': Tensor(shape=(7,), dtype=float32),
        'discount': Scalar(shape=(), dtype=float32),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'language_embedding': Tensor(shape=(512,), dtype=float32),
        'language_instruction': Text(shape=(), dtype=string),
        'observation': FeaturesDict({
            'image': Image(shape=(84, 84, 3), dtype=uint8),
            'state': Tensor(shape=(7,), dtype=float32),
        'reward': Scalar(shape=(), dtype=float32),
  • Feature documentation:
Feature Class Shape Dtype Description
episode_metadata FeaturesDict
episode_metadata/file_path Text string Path to the original data file.
steps Dataset
steps/action Tensor (7,) float32 Robot action, consists of [3x robot end effector delta positions, 3x robot end effector rotations (roll, pitch, yaw),1x gripper open/close (0-open, 1-closed)].
steps/discount Scalar float32 Discount if provided, default to 1.
steps/is_first Tensor bool
steps/is_last Tensor bool
steps/is_terminal Tensor bool
steps/language_embedding Tensor (512,) float32 Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5
steps/language_instruction Text string Language Instruction.
steps/observation FeaturesDict
steps/observation/image Image (84, 84, 3) uint8 Main camera RGB observation.
steps/observation/state Tensor (7,) float32 Robot state, consists of [3x robot end effector positions, 3x robot end effector rotations (roll, pitch, yaw),1x gripper open/close (0-open, 1-closed)].
steps/reward Scalar float32 Reward if provided, 1 on final step for demos.
  • Citation:
  title={Watch and match: Supercharging imitation with regularized optimal transport},
  author={Haldar, Siddhant and Mathur, Vaibhav and Yarats, Denis and Pinto, Lerrel},
  booktitle={Conference on Robot Learning},