covost2

Referensi:

en_de

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:covost2/en_de')
  • Keterangan :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 15531
'train' 289430
'validation' 15531
  • Fitur :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

en_tr

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:covost2/en_tr')
  • Keterangan :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 15531
'train' 289430
'validation' 15531
  • Fitur :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

en_fa

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:covost2/en_fa')
  • Keterangan :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 15531
'train' 289430
'validation' 15531
  • Fitur :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

en_sv-SE

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:covost2/en_sv-SE')
  • Keterangan :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 15531
'train' 289430
'validation' 15531
  • Fitur :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

en_mn

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:covost2/en_mn')
  • Keterangan :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 15531
'train' 289430
'validation' 15531
  • Fitur :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

en_zh-CN

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:covost2/en_zh-CN')
  • Keterangan :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 15531
'train' 289430
'validation' 15531
  • Fitur :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

en_cy

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:covost2/en_cy')
  • Keterangan :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 15531
'train' 289430
'validation' 15531
  • Fitur :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

en_ca

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:covost2/en_ca')
  • Keterangan :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 15531
'train' 289430
'validation' 15531
  • Fitur :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

en_sl

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:covost2/en_sl')
  • Keterangan :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 15531
'train' 289430
'validation' 15531
  • Fitur :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

en_et

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:covost2/en_et')
  • Keterangan :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 15531
'train' 289430
'validation' 15531
  • Fitur :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

en_id

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:covost2/en_id')
  • Keterangan :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 15531
'train' 289430
'validation' 15531
  • Fitur :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

en_ar

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:covost2/en_ar')
  • Keterangan :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 15531
'train' 289430
'validation' 15531
  • Fitur :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

en_ta

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:covost2/en_ta')
  • Keterangan :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 15531
'train' 289430
'validation' 15531
  • Fitur :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

en_lv

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:covost2/en_lv')
  • Keterangan :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 15531
'train' 289430
'validation' 15531
  • Fitur :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

en_ja

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:covost2/en_ja')
  • Keterangan :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 15531
'train' 289430
'validation' 15531
  • Fitur :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

teman

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:covost2/fr_en')
  • Keterangan :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 14760
'train' 207374
'validation' 14760
  • Fitur :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

de_en

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:covost2/de_en')
  • Keterangan :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 13511
'train' 127834
'validation' 13511
  • Fitur :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

es_en

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:covost2/es_en')
  • Keterangan :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 13221
'train' 79015
'validation' 13221
  • Fitur :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

ca_en

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:covost2/ca_en')
  • Keterangan :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 12730
'train' 95854
'validation' 12730
  • Fitur :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

itu_en

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:covost2/it_en')
  • Keterangan :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 8951
'train' 31698
'validation' 8940
  • Fitur :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

ru_en

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:covost2/ru_en')
  • Keterangan :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 6300
'train' 12112
'validation' 6110
  • Fitur :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

zh-CN_en

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:covost2/zh-CN_en')
  • Keterangan :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 4898
'train' 7085
'validation' 4843
  • Fitur :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

pt_en

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:covost2/pt_en')
  • Keterangan :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 4023
'train' 9158
'validation' 3318
  • Fitur :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

fa_en

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:covost2/fa_en')
  • Keterangan :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 3445
'train' 53949
'validation' 3445
  • Fitur :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

et_en

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:covost2/et_en')
  • Keterangan :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 1571
'train' 1782
'validation' 1576
  • Fitur :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

mn_en

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:covost2/mn_en')
  • Keterangan :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 1759
'train' 2067
'validation' 1761
  • Fitur :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

nl_en

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:covost2/nl_en')
  • Keterangan :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 1699
'train' 7108
'validation' 1699
  • Fitur :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

tr_en

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:covost2/tr_en')
  • Keterangan :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 1629
'train' 3966
'validation' 1624
  • Fitur :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

ar_en

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:covost2/ar_en')
  • Keterangan :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 1695
'train' 2283
'validation' 1758
  • Fitur :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

sv-SE_en

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:covost2/sv-SE_en')
  • Keterangan :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 1595
'train' 2160
'validation' 1349
  • Fitur :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

lv_en

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:covost2/lv_en')
  • Keterangan :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 1629
'train' 2337
'validation' 1125
  • Fitur :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

sl_en

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:covost2/sl_en')
  • Keterangan :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 360
'train' 1843
'validation' 509
  • Fitur :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

ta_en

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:covost2/ta_en')
  • Keterangan :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 786
'train' 1358
'validation' 384
  • Fitur :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

ja_en

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:covost2/ja_en')
  • Keterangan :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 684
'train' 1119
'validation' 635
  • Fitur :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

ID_en

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:covost2/id_en')
  • Keterangan :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 844
'train' 1243
'validation' 792
  • Fitur :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

cy_en

Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:

ds = tfds.load('huggingface:covost2/cy_en')
  • Keterangan :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
  • Lisensi : Tidak ada lisensi yang diketahui
  • Versi : 1.0.0
  • Perpecahan :
Membelah Contoh
'test' 690
'train' 1241
'validation' 690
  • Fitur :
{
    "client_id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "file": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "translation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}