Referensi:
en
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:multi_eurlex/en')
- Keterangan :
MultiEURLEX comprises 65k EU laws in 23 official EU languages (some low-ish resource).
Each EU law has been annotated with EUROVOC concepts (labels) by the Publication Office of EU.
As with the English EURLEX, the goal is to predict the relevant EUROVOC concepts (labels);
this is multi-label classification task (given the text, predict multiple labels).
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 1.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'test' | 5000 |
'train' | 55000 |
'validation' | 5000 |
- Fitur :
{
"celex_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"feature": {
"num_classes": 21,
"names": [
"100149",
"100160",
"100148",
"100147",
"100152",
"100143",
"100156",
"100158",
"100154",
"100153",
"100142",
"100145",
"100150",
"100162",
"100159",
"100144",
"100151",
"100157",
"100161",
"100146",
"100155"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
ya
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:multi_eurlex/da')
- Keterangan :
MultiEURLEX comprises 65k EU laws in 23 official EU languages (some low-ish resource).
Each EU law has been annotated with EUROVOC concepts (labels) by the Publication Office of EU.
As with the English EURLEX, the goal is to predict the relevant EUROVOC concepts (labels);
this is multi-label classification task (given the text, predict multiple labels).
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 1.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'test' | 5000 |
'train' | 55000 |
'validation' | 5000 |
- Fitur :
{
"celex_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"feature": {
"num_classes": 21,
"names": [
"100149",
"100160",
"100148",
"100147",
"100152",
"100143",
"100156",
"100158",
"100154",
"100153",
"100142",
"100145",
"100150",
"100162",
"100159",
"100144",
"100151",
"100157",
"100161",
"100146",
"100155"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
de
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:multi_eurlex/de')
- Keterangan :
MultiEURLEX comprises 65k EU laws in 23 official EU languages (some low-ish resource).
Each EU law has been annotated with EUROVOC concepts (labels) by the Publication Office of EU.
As with the English EURLEX, the goal is to predict the relevant EUROVOC concepts (labels);
this is multi-label classification task (given the text, predict multiple labels).
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 1.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'test' | 5000 |
'train' | 55000 |
'validation' | 5000 |
- Fitur :
{
"celex_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"feature": {
"num_classes": 21,
"names": [
"100149",
"100160",
"100148",
"100147",
"100152",
"100143",
"100156",
"100158",
"100154",
"100153",
"100142",
"100145",
"100150",
"100162",
"100159",
"100144",
"100151",
"100157",
"100161",
"100146",
"100155"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
tidak
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:multi_eurlex/nl')
- Keterangan :
MultiEURLEX comprises 65k EU laws in 23 official EU languages (some low-ish resource).
Each EU law has been annotated with EUROVOC concepts (labels) by the Publication Office of EU.
As with the English EURLEX, the goal is to predict the relevant EUROVOC concepts (labels);
this is multi-label classification task (given the text, predict multiple labels).
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 1.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'test' | 5000 |
'train' | 55000 |
'validation' | 5000 |
- Fitur :
{
"celex_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"feature": {
"num_classes": 21,
"names": [
"100149",
"100160",
"100148",
"100147",
"100152",
"100143",
"100156",
"100158",
"100154",
"100153",
"100142",
"100145",
"100150",
"100162",
"100159",
"100144",
"100151",
"100157",
"100161",
"100146",
"100155"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
St
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:multi_eurlex/sv')
- Keterangan :
MultiEURLEX comprises 65k EU laws in 23 official EU languages (some low-ish resource).
Each EU law has been annotated with EUROVOC concepts (labels) by the Publication Office of EU.
As with the English EURLEX, the goal is to predict the relevant EUROVOC concepts (labels);
this is multi-label classification task (given the text, predict multiple labels).
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 1.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'test' | 5000 |
'train' | 42490 |
'validation' | 5000 |
- Fitur :
{
"celex_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"feature": {
"num_classes": 21,
"names": [
"100149",
"100160",
"100148",
"100147",
"100152",
"100143",
"100156",
"100158",
"100154",
"100153",
"100142",
"100145",
"100150",
"100162",
"100159",
"100144",
"100151",
"100157",
"100161",
"100146",
"100155"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
bg
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:multi_eurlex/bg')
- Keterangan :
MultiEURLEX comprises 65k EU laws in 23 official EU languages (some low-ish resource).
Each EU law has been annotated with EUROVOC concepts (labels) by the Publication Office of EU.
As with the English EURLEX, the goal is to predict the relevant EUROVOC concepts (labels);
this is multi-label classification task (given the text, predict multiple labels).
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 1.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'test' | 5000 |
'train' | 15986 |
'validation' | 5000 |
- Fitur :
{
"celex_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"feature": {
"num_classes": 21,
"names": [
"100149",
"100160",
"100148",
"100147",
"100152",
"100143",
"100156",
"100158",
"100154",
"100153",
"100142",
"100145",
"100150",
"100162",
"100159",
"100144",
"100151",
"100157",
"100161",
"100146",
"100155"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
cs
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:multi_eurlex/cs')
- Keterangan :
MultiEURLEX comprises 65k EU laws in 23 official EU languages (some low-ish resource).
Each EU law has been annotated with EUROVOC concepts (labels) by the Publication Office of EU.
As with the English EURLEX, the goal is to predict the relevant EUROVOC concepts (labels);
this is multi-label classification task (given the text, predict multiple labels).
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 1.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'test' | 5000 |
'train' | 23187 |
'validation' | 5000 |
- Fitur :
{
"celex_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"feature": {
"num_classes": 21,
"names": [
"100149",
"100160",
"100148",
"100147",
"100152",
"100143",
"100156",
"100158",
"100154",
"100153",
"100142",
"100145",
"100150",
"100162",
"100159",
"100144",
"100151",
"100157",
"100161",
"100146",
"100155"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
jam
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:multi_eurlex/hr')
- Keterangan :
MultiEURLEX comprises 65k EU laws in 23 official EU languages (some low-ish resource).
Each EU law has been annotated with EUROVOC concepts (labels) by the Publication Office of EU.
As with the English EURLEX, the goal is to predict the relevant EUROVOC concepts (labels);
this is multi-label classification task (given the text, predict multiple labels).
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 1.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'test' | 5000 |
'train' | 7944 |
'validation' | 2500 |
- Fitur :
{
"celex_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"feature": {
"num_classes": 21,
"names": [
"100149",
"100160",
"100148",
"100147",
"100152",
"100143",
"100156",
"100158",
"100154",
"100153",
"100142",
"100145",
"100150",
"100162",
"100159",
"100144",
"100151",
"100157",
"100161",
"100146",
"100155"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
hal
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:multi_eurlex/pl')
- Keterangan :
MultiEURLEX comprises 65k EU laws in 23 official EU languages (some low-ish resource).
Each EU law has been annotated with EUROVOC concepts (labels) by the Publication Office of EU.
As with the English EURLEX, the goal is to predict the relevant EUROVOC concepts (labels);
this is multi-label classification task (given the text, predict multiple labels).
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 1.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'test' | 5000 |
'train' | 23197 |
'validation' | 5000 |
- Fitur :
{
"celex_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"feature": {
"num_classes": 21,
"names": [
"100149",
"100160",
"100148",
"100147",
"100152",
"100143",
"100156",
"100158",
"100154",
"100153",
"100142",
"100145",
"100150",
"100162",
"100159",
"100144",
"100151",
"100157",
"100161",
"100146",
"100155"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
sk
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:multi_eurlex/sk')
- Keterangan :
MultiEURLEX comprises 65k EU laws in 23 official EU languages (some low-ish resource).
Each EU law has been annotated with EUROVOC concepts (labels) by the Publication Office of EU.
As with the English EURLEX, the goal is to predict the relevant EUROVOC concepts (labels);
this is multi-label classification task (given the text, predict multiple labels).
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 1.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'test' | 5000 |
'train' | 22971 |
'validation' | 5000 |
- Fitur :
{
"celex_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"feature": {
"num_classes": 21,
"names": [
"100149",
"100160",
"100148",
"100147",
"100152",
"100143",
"100156",
"100158",
"100154",
"100153",
"100142",
"100145",
"100150",
"100162",
"100159",
"100144",
"100151",
"100157",
"100161",
"100146",
"100155"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
sl
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:multi_eurlex/sl')
- Keterangan :
MultiEURLEX comprises 65k EU laws in 23 official EU languages (some low-ish resource).
Each EU law has been annotated with EUROVOC concepts (labels) by the Publication Office of EU.
As with the English EURLEX, the goal is to predict the relevant EUROVOC concepts (labels);
this is multi-label classification task (given the text, predict multiple labels).
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 1.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'test' | 5000 |
'train' | 23184 |
'validation' | 5000 |
- Fitur :
{
"celex_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"feature": {
"num_classes": 21,
"names": [
"100149",
"100160",
"100148",
"100147",
"100152",
"100143",
"100156",
"100158",
"100154",
"100153",
"100142",
"100145",
"100150",
"100162",
"100159",
"100144",
"100151",
"100157",
"100161",
"100146",
"100155"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
yaitu
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:multi_eurlex/es')
- Keterangan :
MultiEURLEX comprises 65k EU laws in 23 official EU languages (some low-ish resource).
Each EU law has been annotated with EUROVOC concepts (labels) by the Publication Office of EU.
As with the English EURLEX, the goal is to predict the relevant EUROVOC concepts (labels);
this is multi-label classification task (given the text, predict multiple labels).
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 1.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'test' | 5000 |
'train' | 52785 |
'validation' | 5000 |
- Fitur :
{
"celex_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"feature": {
"num_classes": 21,
"names": [
"100149",
"100160",
"100148",
"100147",
"100152",
"100143",
"100156",
"100158",
"100154",
"100153",
"100142",
"100145",
"100150",
"100162",
"100159",
"100144",
"100151",
"100157",
"100161",
"100146",
"100155"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
NS
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:multi_eurlex/fr')
- Keterangan :
MultiEURLEX comprises 65k EU laws in 23 official EU languages (some low-ish resource).
Each EU law has been annotated with EUROVOC concepts (labels) by the Publication Office of EU.
As with the English EURLEX, the goal is to predict the relevant EUROVOC concepts (labels);
this is multi-label classification task (given the text, predict multiple labels).
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 1.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'test' | 5000 |
'train' | 55000 |
'validation' | 5000 |
- Fitur :
{
"celex_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"feature": {
"num_classes": 21,
"names": [
"100149",
"100160",
"100148",
"100147",
"100152",
"100143",
"100156",
"100158",
"100154",
"100153",
"100142",
"100145",
"100150",
"100162",
"100159",
"100144",
"100151",
"100157",
"100161",
"100146",
"100155"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
dia
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:multi_eurlex/it')
- Keterangan :
MultiEURLEX comprises 65k EU laws in 23 official EU languages (some low-ish resource).
Each EU law has been annotated with EUROVOC concepts (labels) by the Publication Office of EU.
As with the English EURLEX, the goal is to predict the relevant EUROVOC concepts (labels);
this is multi-label classification task (given the text, predict multiple labels).
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 1.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'test' | 5000 |
'train' | 55000 |
'validation' | 5000 |
- Fitur :
{
"celex_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"feature": {
"num_classes": 21,
"names": [
"100149",
"100160",
"100148",
"100147",
"100152",
"100143",
"100156",
"100158",
"100154",
"100153",
"100142",
"100145",
"100150",
"100162",
"100159",
"100144",
"100151",
"100157",
"100161",
"100146",
"100155"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
pt
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:multi_eurlex/pt')
- Keterangan :
MultiEURLEX comprises 65k EU laws in 23 official EU languages (some low-ish resource).
Each EU law has been annotated with EUROVOC concepts (labels) by the Publication Office of EU.
As with the English EURLEX, the goal is to predict the relevant EUROVOC concepts (labels);
this is multi-label classification task (given the text, predict multiple labels).
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 1.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'test' | 5000 |
'train' | 52370 |
'validation' | 5000 |
- Fitur :
{
"celex_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"feature": {
"num_classes": 21,
"names": [
"100149",
"100160",
"100148",
"100147",
"100152",
"100143",
"100156",
"100158",
"100154",
"100153",
"100142",
"100145",
"100150",
"100162",
"100159",
"100144",
"100151",
"100157",
"100161",
"100146",
"100155"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
ro
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:multi_eurlex/ro')
- Keterangan :
MultiEURLEX comprises 65k EU laws in 23 official EU languages (some low-ish resource).
Each EU law has been annotated with EUROVOC concepts (labels) by the Publication Office of EU.
As with the English EURLEX, the goal is to predict the relevant EUROVOC concepts (labels);
this is multi-label classification task (given the text, predict multiple labels).
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 1.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'test' | 5000 |
'train' | 15921 |
'validation' | 5000 |
- Fitur :
{
"celex_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"feature": {
"num_classes": 21,
"names": [
"100149",
"100160",
"100148",
"100147",
"100152",
"100143",
"100156",
"100158",
"100154",
"100153",
"100142",
"100145",
"100150",
"100162",
"100159",
"100144",
"100151",
"100157",
"100161",
"100146",
"100155"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
et
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:multi_eurlex/et')
- Keterangan :
MultiEURLEX comprises 65k EU laws in 23 official EU languages (some low-ish resource).
Each EU law has been annotated with EUROVOC concepts (labels) by the Publication Office of EU.
As with the English EURLEX, the goal is to predict the relevant EUROVOC concepts (labels);
this is multi-label classification task (given the text, predict multiple labels).
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 1.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'test' | 5000 |
'train' | 23126 |
'validation' | 5000 |
- Fitur :
{
"celex_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"feature": {
"num_classes": 21,
"names": [
"100149",
"100160",
"100148",
"100147",
"100152",
"100143",
"100156",
"100158",
"100154",
"100153",
"100142",
"100145",
"100150",
"100162",
"100159",
"100144",
"100151",
"100157",
"100161",
"100146",
"100155"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
fi
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:multi_eurlex/fi')
- Keterangan :
MultiEURLEX comprises 65k EU laws in 23 official EU languages (some low-ish resource).
Each EU law has been annotated with EUROVOC concepts (labels) by the Publication Office of EU.
As with the English EURLEX, the goal is to predict the relevant EUROVOC concepts (labels);
this is multi-label classification task (given the text, predict multiple labels).
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 1.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'test' | 5000 |
'train' | 42497 |
'validation' | 5000 |
- Fitur :
{
"celex_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"feature": {
"num_classes": 21,
"names": [
"100149",
"100160",
"100148",
"100147",
"100152",
"100143",
"100156",
"100158",
"100154",
"100153",
"100142",
"100145",
"100150",
"100162",
"100159",
"100144",
"100151",
"100157",
"100161",
"100146",
"100155"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
huh
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:multi_eurlex/hu')
- Keterangan :
MultiEURLEX comprises 65k EU laws in 23 official EU languages (some low-ish resource).
Each EU law has been annotated with EUROVOC concepts (labels) by the Publication Office of EU.
As with the English EURLEX, the goal is to predict the relevant EUROVOC concepts (labels);
this is multi-label classification task (given the text, predict multiple labels).
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 1.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'test' | 5000 |
'train' | 22664 |
'validation' | 5000 |
- Fitur :
{
"celex_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"feature": {
"num_classes": 21,
"names": [
"100149",
"100160",
"100148",
"100147",
"100152",
"100143",
"100156",
"100158",
"100154",
"100153",
"100142",
"100145",
"100150",
"100162",
"100159",
"100144",
"100151",
"100157",
"100161",
"100146",
"100155"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
lt
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:multi_eurlex/lt')
- Keterangan :
MultiEURLEX comprises 65k EU laws in 23 official EU languages (some low-ish resource).
Each EU law has been annotated with EUROVOC concepts (labels) by the Publication Office of EU.
As with the English EURLEX, the goal is to predict the relevant EUROVOC concepts (labels);
this is multi-label classification task (given the text, predict multiple labels).
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 1.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'test' | 5000 |
'train' | 23188 |
'validation' | 5000 |
- Fitur :
{
"celex_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"feature": {
"num_classes": 21,
"names": [
"100149",
"100160",
"100148",
"100147",
"100152",
"100143",
"100156",
"100158",
"100154",
"100153",
"100142",
"100145",
"100150",
"100162",
"100159",
"100144",
"100151",
"100157",
"100161",
"100146",
"100155"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
lv
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:multi_eurlex/lv')
- Keterangan :
MultiEURLEX comprises 65k EU laws in 23 official EU languages (some low-ish resource).
Each EU law has been annotated with EUROVOC concepts (labels) by the Publication Office of EU.
As with the English EURLEX, the goal is to predict the relevant EUROVOC concepts (labels);
this is multi-label classification task (given the text, predict multiple labels).
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 1.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'test' | 5000 |
'train' | 23208 |
'validation' | 5000 |
- Fitur :
{
"celex_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"feature": {
"num_classes": 21,
"names": [
"100149",
"100160",
"100148",
"100147",
"100152",
"100143",
"100156",
"100158",
"100154",
"100153",
"100142",
"100145",
"100150",
"100162",
"100159",
"100144",
"100151",
"100157",
"100161",
"100146",
"100155"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
el
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:multi_eurlex/el')
- Keterangan :
MultiEURLEX comprises 65k EU laws in 23 official EU languages (some low-ish resource).
Each EU law has been annotated with EUROVOC concepts (labels) by the Publication Office of EU.
As with the English EURLEX, the goal is to predict the relevant EUROVOC concepts (labels);
this is multi-label classification task (given the text, predict multiple labels).
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 1.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'test' | 5000 |
'train' | 55000 |
'validation' | 5000 |
- Fitur :
{
"celex_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"feature": {
"num_classes": 21,
"names": [
"100149",
"100160",
"100148",
"100147",
"100152",
"100143",
"100156",
"100158",
"100154",
"100153",
"100142",
"100145",
"100150",
"100162",
"100159",
"100144",
"100151",
"100157",
"100161",
"100146",
"100155"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
mt
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:multi_eurlex/mt')
- Keterangan :
MultiEURLEX comprises 65k EU laws in 23 official EU languages (some low-ish resource).
Each EU law has been annotated with EUROVOC concepts (labels) by the Publication Office of EU.
As with the English EURLEX, the goal is to predict the relevant EUROVOC concepts (labels);
this is multi-label classification task (given the text, predict multiple labels).
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 1.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'test' | 5000 |
'train' | 17521 |
'validation' | 5000 |
- Fitur :
{
"celex_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"feature": {
"num_classes": 21,
"names": [
"100149",
"100160",
"100148",
"100147",
"100152",
"100143",
"100156",
"100158",
"100154",
"100153",
"100142",
"100145",
"100150",
"100162",
"100159",
"100144",
"100151",
"100157",
"100161",
"100146",
"100155"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
semua_bahasa
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:multi_eurlex/all_languages')
- Keterangan :
MultiEURLEX comprises 65k EU laws in 23 official EU languages (some low-ish resource).
Each EU law has been annotated with EUROVOC concepts (labels) by the Publication Office of EU.
As with the English EURLEX, the goal is to predict the relevant EUROVOC concepts (labels);
this is multi-label classification task (given the text, predict multiple labels).
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 1.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'test' | 5000 |
'train' | 55000 |
'validation' | 5000 |
- Fitur :
{
"celex_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"languages": [
"en",
"da",
"de",
"nl",
"sv",
"bg",
"cs",
"hr",
"pl",
"sk",
"sl",
"es",
"fr",
"it",
"pt",
"ro",
"et",
"fi",
"hu",
"lt",
"lv",
"el",
"mt"
],
"id": null,
"_type": "Translation"
},
"labels": {
"feature": {
"num_classes": 21,
"names": [
"100149",
"100160",
"100148",
"100147",
"100152",
"100143",
"100156",
"100158",
"100154",
"100153",
"100142",
"100145",
"100150",
"100162",
"100159",
"100144",
"100151",
"100157",
"100161",
"100146",
"100155"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
,Referensi:
en
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:multi_eurlex/en')
- Keterangan :
MultiEURLEX comprises 65k EU laws in 23 official EU languages (some low-ish resource).
Each EU law has been annotated with EUROVOC concepts (labels) by the Publication Office of EU.
As with the English EURLEX, the goal is to predict the relevant EUROVOC concepts (labels);
this is multi-label classification task (given the text, predict multiple labels).
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 1.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'test' | 5000 |
'train' | 55000 |
'validation' | 5000 |
- Fitur :
{
"celex_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"feature": {
"num_classes": 21,
"names": [
"100149",
"100160",
"100148",
"100147",
"100152",
"100143",
"100156",
"100158",
"100154",
"100153",
"100142",
"100145",
"100150",
"100162",
"100159",
"100144",
"100151",
"100157",
"100161",
"100146",
"100155"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
ya
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:multi_eurlex/da')
- Keterangan :
MultiEURLEX comprises 65k EU laws in 23 official EU languages (some low-ish resource).
Each EU law has been annotated with EUROVOC concepts (labels) by the Publication Office of EU.
As with the English EURLEX, the goal is to predict the relevant EUROVOC concepts (labels);
this is multi-label classification task (given the text, predict multiple labels).
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 1.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'test' | 5000 |
'train' | 55000 |
'validation' | 5000 |
- Fitur :
{
"celex_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"feature": {
"num_classes": 21,
"names": [
"100149",
"100160",
"100148",
"100147",
"100152",
"100143",
"100156",
"100158",
"100154",
"100153",
"100142",
"100145",
"100150",
"100162",
"100159",
"100144",
"100151",
"100157",
"100161",
"100146",
"100155"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
de
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:multi_eurlex/de')
- Keterangan :
MultiEURLEX comprises 65k EU laws in 23 official EU languages (some low-ish resource).
Each EU law has been annotated with EUROVOC concepts (labels) by the Publication Office of EU.
As with the English EURLEX, the goal is to predict the relevant EUROVOC concepts (labels);
this is multi-label classification task (given the text, predict multiple labels).
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 1.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'test' | 5000 |
'train' | 55000 |
'validation' | 5000 |
- Fitur :
{
"celex_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"feature": {
"num_classes": 21,
"names": [
"100149",
"100160",
"100148",
"100147",
"100152",
"100143",
"100156",
"100158",
"100154",
"100153",
"100142",
"100145",
"100150",
"100162",
"100159",
"100144",
"100151",
"100157",
"100161",
"100146",
"100155"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
tidak
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:multi_eurlex/nl')
- Keterangan :
MultiEURLEX comprises 65k EU laws in 23 official EU languages (some low-ish resource).
Each EU law has been annotated with EUROVOC concepts (labels) by the Publication Office of EU.
As with the English EURLEX, the goal is to predict the relevant EUROVOC concepts (labels);
this is multi-label classification task (given the text, predict multiple labels).
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 1.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'test' | 5000 |
'train' | 55000 |
'validation' | 5000 |
- Fitur :
{
"celex_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"feature": {
"num_classes": 21,
"names": [
"100149",
"100160",
"100148",
"100147",
"100152",
"100143",
"100156",
"100158",
"100154",
"100153",
"100142",
"100145",
"100150",
"100162",
"100159",
"100144",
"100151",
"100157",
"100161",
"100146",
"100155"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
St
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:multi_eurlex/sv')
- Keterangan :
MultiEURLEX comprises 65k EU laws in 23 official EU languages (some low-ish resource).
Each EU law has been annotated with EUROVOC concepts (labels) by the Publication Office of EU.
As with the English EURLEX, the goal is to predict the relevant EUROVOC concepts (labels);
this is multi-label classification task (given the text, predict multiple labels).
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 1.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'test' | 5000 |
'train' | 42490 |
'validation' | 5000 |
- Fitur :
{
"celex_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"feature": {
"num_classes": 21,
"names": [
"100149",
"100160",
"100148",
"100147",
"100152",
"100143",
"100156",
"100158",
"100154",
"100153",
"100142",
"100145",
"100150",
"100162",
"100159",
"100144",
"100151",
"100157",
"100161",
"100146",
"100155"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
bg
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:multi_eurlex/bg')
- Keterangan :
MultiEURLEX comprises 65k EU laws in 23 official EU languages (some low-ish resource).
Each EU law has been annotated with EUROVOC concepts (labels) by the Publication Office of EU.
As with the English EURLEX, the goal is to predict the relevant EUROVOC concepts (labels);
this is multi-label classification task (given the text, predict multiple labels).
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 1.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'test' | 5000 |
'train' | 15986 |
'validation' | 5000 |
- Fitur :
{
"celex_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"feature": {
"num_classes": 21,
"names": [
"100149",
"100160",
"100148",
"100147",
"100152",
"100143",
"100156",
"100158",
"100154",
"100153",
"100142",
"100145",
"100150",
"100162",
"100159",
"100144",
"100151",
"100157",
"100161",
"100146",
"100155"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
cs
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:multi_eurlex/cs')
- Keterangan :
MultiEURLEX comprises 65k EU laws in 23 official EU languages (some low-ish resource).
Each EU law has been annotated with EUROVOC concepts (labels) by the Publication Office of EU.
As with the English EURLEX, the goal is to predict the relevant EUROVOC concepts (labels);
this is multi-label classification task (given the text, predict multiple labels).
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 1.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'test' | 5000 |
'train' | 23187 |
'validation' | 5000 |
- Fitur :
{
"celex_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"feature": {
"num_classes": 21,
"names": [
"100149",
"100160",
"100148",
"100147",
"100152",
"100143",
"100156",
"100158",
"100154",
"100153",
"100142",
"100145",
"100150",
"100162",
"100159",
"100144",
"100151",
"100157",
"100161",
"100146",
"100155"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
jam
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:multi_eurlex/hr')
- Keterangan :
MultiEURLEX comprises 65k EU laws in 23 official EU languages (some low-ish resource).
Each EU law has been annotated with EUROVOC concepts (labels) by the Publication Office of EU.
As with the English EURLEX, the goal is to predict the relevant EUROVOC concepts (labels);
this is multi-label classification task (given the text, predict multiple labels).
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 1.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'test' | 5000 |
'train' | 7944 |
'validation' | 2500 |
- Fitur :
{
"celex_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"feature": {
"num_classes": 21,
"names": [
"100149",
"100160",
"100148",
"100147",
"100152",
"100143",
"100156",
"100158",
"100154",
"100153",
"100142",
"100145",
"100150",
"100162",
"100159",
"100144",
"100151",
"100157",
"100161",
"100146",
"100155"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
hal
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:multi_eurlex/pl')
- Keterangan :
MultiEURLEX comprises 65k EU laws in 23 official EU languages (some low-ish resource).
Each EU law has been annotated with EUROVOC concepts (labels) by the Publication Office of EU.
As with the English EURLEX, the goal is to predict the relevant EUROVOC concepts (labels);
this is multi-label classification task (given the text, predict multiple labels).
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 1.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'test' | 5000 |
'train' | 23197 |
'validation' | 5000 |
- Fitur :
{
"celex_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"feature": {
"num_classes": 21,
"names": [
"100149",
"100160",
"100148",
"100147",
"100152",
"100143",
"100156",
"100158",
"100154",
"100153",
"100142",
"100145",
"100150",
"100162",
"100159",
"100144",
"100151",
"100157",
"100161",
"100146",
"100155"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
sk
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:multi_eurlex/sk')
- Keterangan :
MultiEURLEX comprises 65k EU laws in 23 official EU languages (some low-ish resource).
Each EU law has been annotated with EUROVOC concepts (labels) by the Publication Office of EU.
As with the English EURLEX, the goal is to predict the relevant EUROVOC concepts (labels);
this is multi-label classification task (given the text, predict multiple labels).
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 1.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'test' | 5000 |
'train' | 22971 |
'validation' | 5000 |
- Fitur :
{
"celex_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"feature": {
"num_classes": 21,
"names": [
"100149",
"100160",
"100148",
"100147",
"100152",
"100143",
"100156",
"100158",
"100154",
"100153",
"100142",
"100145",
"100150",
"100162",
"100159",
"100144",
"100151",
"100157",
"100161",
"100146",
"100155"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
sl
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:multi_eurlex/sl')
- Keterangan :
MultiEURLEX comprises 65k EU laws in 23 official EU languages (some low-ish resource).
Each EU law has been annotated with EUROVOC concepts (labels) by the Publication Office of EU.
As with the English EURLEX, the goal is to predict the relevant EUROVOC concepts (labels);
this is multi-label classification task (given the text, predict multiple labels).
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 1.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'test' | 5000 |
'train' | 23184 |
'validation' | 5000 |
- Fitur :
{
"celex_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"feature": {
"num_classes": 21,
"names": [
"100149",
"100160",
"100148",
"100147",
"100152",
"100143",
"100156",
"100158",
"100154",
"100153",
"100142",
"100145",
"100150",
"100162",
"100159",
"100144",
"100151",
"100157",
"100161",
"100146",
"100155"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
yaitu
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:multi_eurlex/es')
- Keterangan :
MultiEURLEX comprises 65k EU laws in 23 official EU languages (some low-ish resource).
Each EU law has been annotated with EUROVOC concepts (labels) by the Publication Office of EU.
As with the English EURLEX, the goal is to predict the relevant EUROVOC concepts (labels);
this is multi-label classification task (given the text, predict multiple labels).
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 1.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'test' | 5000 |
'train' | 52785 |
'validation' | 5000 |
- Fitur :
{
"celex_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"feature": {
"num_classes": 21,
"names": [
"100149",
"100160",
"100148",
"100147",
"100152",
"100143",
"100156",
"100158",
"100154",
"100153",
"100142",
"100145",
"100150",
"100162",
"100159",
"100144",
"100151",
"100157",
"100161",
"100146",
"100155"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
NS
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:multi_eurlex/fr')
- Keterangan :
MultiEURLEX comprises 65k EU laws in 23 official EU languages (some low-ish resource).
Each EU law has been annotated with EUROVOC concepts (labels) by the Publication Office of EU.
As with the English EURLEX, the goal is to predict the relevant EUROVOC concepts (labels);
this is multi-label classification task (given the text, predict multiple labels).
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 1.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'test' | 5000 |
'train' | 55000 |
'validation' | 5000 |
- Fitur :
{
"celex_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"feature": {
"num_classes": 21,
"names": [
"100149",
"100160",
"100148",
"100147",
"100152",
"100143",
"100156",
"100158",
"100154",
"100153",
"100142",
"100145",
"100150",
"100162",
"100159",
"100144",
"100151",
"100157",
"100161",
"100146",
"100155"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
dia
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:multi_eurlex/it')
- Keterangan :
MultiEURLEX comprises 65k EU laws in 23 official EU languages (some low-ish resource).
Each EU law has been annotated with EUROVOC concepts (labels) by the Publication Office of EU.
As with the English EURLEX, the goal is to predict the relevant EUROVOC concepts (labels);
this is multi-label classification task (given the text, predict multiple labels).
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 1.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'test' | 5000 |
'train' | 55000 |
'validation' | 5000 |
- Fitur :
{
"celex_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"feature": {
"num_classes": 21,
"names": [
"100149",
"100160",
"100148",
"100147",
"100152",
"100143",
"100156",
"100158",
"100154",
"100153",
"100142",
"100145",
"100150",
"100162",
"100159",
"100144",
"100151",
"100157",
"100161",
"100146",
"100155"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
pt
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:multi_eurlex/pt')
- Keterangan :
MultiEURLEX comprises 65k EU laws in 23 official EU languages (some low-ish resource).
Each EU law has been annotated with EUROVOC concepts (labels) by the Publication Office of EU.
As with the English EURLEX, the goal is to predict the relevant EUROVOC concepts (labels);
this is multi-label classification task (given the text, predict multiple labels).
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 1.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'test' | 5000 |
'train' | 52370 |
'validation' | 5000 |
- Fitur :
{
"celex_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"feature": {
"num_classes": 21,
"names": [
"100149",
"100160",
"100148",
"100147",
"100152",
"100143",
"100156",
"100158",
"100154",
"100153",
"100142",
"100145",
"100150",
"100162",
"100159",
"100144",
"100151",
"100157",
"100161",
"100146",
"100155"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
ro
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:multi_eurlex/ro')
- Keterangan :
MultiEURLEX comprises 65k EU laws in 23 official EU languages (some low-ish resource).
Each EU law has been annotated with EUROVOC concepts (labels) by the Publication Office of EU.
As with the English EURLEX, the goal is to predict the relevant EUROVOC concepts (labels);
this is multi-label classification task (given the text, predict multiple labels).
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 1.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'test' | 5000 |
'train' | 15921 |
'validation' | 5000 |
- Fitur :
{
"celex_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"feature": {
"num_classes": 21,
"names": [
"100149",
"100160",
"100148",
"100147",
"100152",
"100143",
"100156",
"100158",
"100154",
"100153",
"100142",
"100145",
"100150",
"100162",
"100159",
"100144",
"100151",
"100157",
"100161",
"100146",
"100155"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
et
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:multi_eurlex/et')
- Keterangan :
MultiEURLEX comprises 65k EU laws in 23 official EU languages (some low-ish resource).
Each EU law has been annotated with EUROVOC concepts (labels) by the Publication Office of EU.
As with the English EURLEX, the goal is to predict the relevant EUROVOC concepts (labels);
this is multi-label classification task (given the text, predict multiple labels).
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 1.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'test' | 5000 |
'train' | 23126 |
'validation' | 5000 |
- Fitur :
{
"celex_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"feature": {
"num_classes": 21,
"names": [
"100149",
"100160",
"100148",
"100147",
"100152",
"100143",
"100156",
"100158",
"100154",
"100153",
"100142",
"100145",
"100150",
"100162",
"100159",
"100144",
"100151",
"100157",
"100161",
"100146",
"100155"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
fi
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:multi_eurlex/fi')
- Keterangan :
MultiEURLEX comprises 65k EU laws in 23 official EU languages (some low-ish resource).
Each EU law has been annotated with EUROVOC concepts (labels) by the Publication Office of EU.
As with the English EURLEX, the goal is to predict the relevant EUROVOC concepts (labels);
this is multi-label classification task (given the text, predict multiple labels).
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 1.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'test' | 5000 |
'train' | 42497 |
'validation' | 5000 |
- Fitur :
{
"celex_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"feature": {
"num_classes": 21,
"names": [
"100149",
"100160",
"100148",
"100147",
"100152",
"100143",
"100156",
"100158",
"100154",
"100153",
"100142",
"100145",
"100150",
"100162",
"100159",
"100144",
"100151",
"100157",
"100161",
"100146",
"100155"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
huh
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:multi_eurlex/hu')
- Keterangan :
MultiEURLEX comprises 65k EU laws in 23 official EU languages (some low-ish resource).
Each EU law has been annotated with EUROVOC concepts (labels) by the Publication Office of EU.
As with the English EURLEX, the goal is to predict the relevant EUROVOC concepts (labels);
this is multi-label classification task (given the text, predict multiple labels).
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 1.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'test' | 5000 |
'train' | 22664 |
'validation' | 5000 |
- Fitur :
{
"celex_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"feature": {
"num_classes": 21,
"names": [
"100149",
"100160",
"100148",
"100147",
"100152",
"100143",
"100156",
"100158",
"100154",
"100153",
"100142",
"100145",
"100150",
"100162",
"100159",
"100144",
"100151",
"100157",
"100161",
"100146",
"100155"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
lt
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:multi_eurlex/lt')
- Keterangan :
MultiEURLEX comprises 65k EU laws in 23 official EU languages (some low-ish resource).
Each EU law has been annotated with EUROVOC concepts (labels) by the Publication Office of EU.
As with the English EURLEX, the goal is to predict the relevant EUROVOC concepts (labels);
this is multi-label classification task (given the text, predict multiple labels).
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 1.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'test' | 5000 |
'train' | 23188 |
'validation' | 5000 |
- Fitur :
{
"celex_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"feature": {
"num_classes": 21,
"names": [
"100149",
"100160",
"100148",
"100147",
"100152",
"100143",
"100156",
"100158",
"100154",
"100153",
"100142",
"100145",
"100150",
"100162",
"100159",
"100144",
"100151",
"100157",
"100161",
"100146",
"100155"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
lv
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:multi_eurlex/lv')
- Keterangan :
MultiEURLEX comprises 65k EU laws in 23 official EU languages (some low-ish resource).
Each EU law has been annotated with EUROVOC concepts (labels) by the Publication Office of EU.
As with the English EURLEX, the goal is to predict the relevant EUROVOC concepts (labels);
this is multi-label classification task (given the text, predict multiple labels).
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 1.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'test' | 5000 |
'train' | 23208 |
'validation' | 5000 |
- Fitur :
{
"celex_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"feature": {
"num_classes": 21,
"names": [
"100149",
"100160",
"100148",
"100147",
"100152",
"100143",
"100156",
"100158",
"100154",
"100153",
"100142",
"100145",
"100150",
"100162",
"100159",
"100144",
"100151",
"100157",
"100161",
"100146",
"100155"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
el
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:multi_eurlex/el')
- Keterangan :
MultiEURLEX comprises 65k EU laws in 23 official EU languages (some low-ish resource).
Each EU law has been annotated with EUROVOC concepts (labels) by the Publication Office of EU.
As with the English EURLEX, the goal is to predict the relevant EUROVOC concepts (labels);
this is multi-label classification task (given the text, predict multiple labels).
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 1.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'test' | 5000 |
'train' | 55000 |
'validation' | 5000 |
- Fitur :
{
"celex_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"feature": {
"num_classes": 21,
"names": [
"100149",
"100160",
"100148",
"100147",
"100152",
"100143",
"100156",
"100158",
"100154",
"100153",
"100142",
"100145",
"100150",
"100162",
"100159",
"100144",
"100151",
"100157",
"100161",
"100146",
"100155"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
mt
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:multi_eurlex/mt')
- Keterangan :
MultiEURLEX comprises 65k EU laws in 23 official EU languages (some low-ish resource).
Each EU law has been annotated with EUROVOC concepts (labels) by the Publication Office of EU.
As with the English EURLEX, the goal is to predict the relevant EUROVOC concepts (labels);
this is multi-label classification task (given the text, predict multiple labels).
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 1.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'test' | 5000 |
'train' | 17521 |
'validation' | 5000 |
- Fitur :
{
"celex_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"feature": {
"num_classes": 21,
"names": [
"100149",
"100160",
"100148",
"100147",
"100152",
"100143",
"100156",
"100158",
"100154",
"100153",
"100142",
"100145",
"100150",
"100162",
"100159",
"100144",
"100151",
"100157",
"100161",
"100146",
"100155"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
semua_bahasa
Gunakan perintah berikut untuk memuat kumpulan data ini di TFDS:
ds = tfds.load('huggingface:multi_eurlex/all_languages')
- Keterangan :
MultiEURLEX comprises 65k EU laws in 23 official EU languages (some low-ish resource).
Each EU law has been annotated with EUROVOC concepts (labels) by the Publication Office of EU.
As with the English EURLEX, the goal is to predict the relevant EUROVOC concepts (labels);
this is multi-label classification task (given the text, predict multiple labels).
- Lisensi : Tidak ada lisensi yang diketahui
- Versi : 1.0.0
- Perpecahan :
Membelah | Contoh |
---|---|
'test' | 5000 |
'train' | 55000 |
'validation' | 5000 |
- Fitur :
{
"celex_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"languages": [
"en",
"da",
"de",
"nl",
"sv",
"bg",
"cs",
"hr",
"pl",
"sk",
"sl",
"es",
"fr",
"it",
"pt",
"ro",
"et",
"fi",
"hu",
"lt",
"lv",
"el",
"mt"
],
"id": null,
"_type": "Translation"
},
"labels": {
"feature": {
"num_classes": 21,
"names": [
"100149",
"100160",
"100148",
"100147",
"100152",
"100143",
"100156",
"100158",
"100154",
"100153",
"100142",
"100145",
"100150",
"100162",
"100159",
"100144",
"100151",
"100157",
"100161",
"100146",
"100155"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}