iamlab_cmu_pickup_insert_converted_externally_to_rlds

  • Keterangan :

Franka memilih objek dan tugas memasukkan

Membelah Contoh
'train' 631
  • Struktur fitur :
FeaturesDict({
   
'episode_metadata': FeaturesDict({
       
'file_path': Text(shape=(), dtype=string),
   
}),
   
'steps': Dataset({
       
'action': Tensor(shape=(8,), dtype=float32, description=Robot action, consists of [3x end-effector position, 4x end-effector quaternion, 1x gripper open/close].),
       
'discount': Scalar(shape=(), dtype=float32, description=Discount if provided, default to 1.),
       
'is_first': bool,
       
'is_last': bool,
       
'is_terminal': bool,
       
'language_embedding': Tensor(shape=(512,), dtype=float32, description=Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5),
       
'language_instruction': Text(shape=(), dtype=string),
       
'observation': FeaturesDict({
           
'image': Image(shape=(360, 640, 3), dtype=uint8, description=Main camera RGB observation.),
           
'state': Tensor(shape=(20,), dtype=float32, description=Robot state, consists of [7x robot joint angles, 1x gripper status, 6x joint torques, 6x end-effector force].),
           
'wrist_image': Image(shape=(240, 320, 3), dtype=uint8, description=Wrist camera RGB observation.),
       
}),
       
'reward': Scalar(shape=(), dtype=float32, description=Reward if provided, 1 on final step for demos.),
   
}),
})
  • Dokumentasi fitur :
Fitur Kelas Membentuk Tipe D Keterangan
FiturDict
episode_metadata FiturDict
episode_metadata/file_path Teks rangkaian Jalur ke file data asli.
tangga Kumpulan data
langkah/tindakan Tensor (8,) float32 Aksi robot, terdiri dari [3x posisi efektor akhir, 4x angka empat efektor akhir, 1x gripper buka/tutup].
langkah/diskon Skalar float32 Diskon jika disediakan, defaultnya adalah 1.
langkah/adalah_pertama Tensor bodoh
langkah/adalah_terakhir Tensor bodoh
langkah/is_terminal Tensor bodoh
langkah/bahasa_penyematan Tensor (512,) float32 Penyematan bahasa Kona. Lihat https://tfhub.dev/google/universal-sentence-encoder-large/5
langkah/bahasa_instruksi Teks rangkaian Instruksi Bahasa.
langkah/pengamatan FiturDict
langkah/pengamatan/gambar Gambar (360, 640, 3) uint8 Pengamatan RGB kamera utama.
langkah/pengamatan/keadaan Tensor (20,) float32 Keadaan robot, terdiri dari [7x sudut sambungan robot, 1x status gripper, 6x torsi sambungan, 6x gaya efektor akhir].
langkah/pengamatan/wrist_image Gambar (240, 320, 3) uint8 Pengamatan RGB kamera pergelangan tangan.
langkah/hadiah Skalar float32 Hadiah jika diberikan, 1 pada langkah terakhir untuk demo.
  • Kutipan :
@inproceedings{
saxena2023multiresolution
,
title
={Multi-Resolution Sensing for Real-Time Control with Vision-Language Models},
author
={Saumya Saxena and Mohit Sharma and Oliver Kroemer},
booktitle
={7th Annual Conference on Robot Learning},
year
={2023},
url
={https://openreview.net/forum?id=WuBv9-IGDUA}
}