imagenet_v2
Tetap teratur dengan koleksi
Simpan dan kategorikan konten berdasarkan preferensi Anda.
ImageNet-v2 adalah set pengujian ImageNet (10 per kelas) yang dikumpulkan dengan mengikuti protokol pelabelan asli. Setiap gambar telah diberi label oleh setidaknya 10 pekerja MTurk, mungkin lebih, dan bergantung pada strategi yang digunakan untuk memilih gambar mana yang akan disertakan, di antara 10 gambar yang dipilih untuk kelas tertentu, terdapat tiga versi kumpulan data yang berbeda. Silakan merujuk ke bagian empat makalah ini untuk rincian lebih lanjut tentang bagaimana berbagai varian disusun.
Ruang label sama dengan ImageNet2012. Setiap contoh direpresentasikan sebagai kamus dengan kunci berikut:
- 'gambar': Gambar, a (H, W, 3) -tensor.
- 'label': Bilangan bulat dalam rentang [0, 1000).
'file_name': Sengatan unik yang mengidentifikasi contoh dalam kumpulan data.
Beranda : https://github.com/modestyachts/ImageNetV2
Kode sumber : tfds.datasets.imagenet_v2.Builder
Versi :
-
1.0.0
: Versi awal. -
2.0.0
: File diperbarui. -
3.0.0
(default): Memperbaiki nama_file, dari jalur absolut ke jalur relatif terhadap direktori data, yaitu: "class_id/filename.jpg". -
3.1.0
: URL baru untuk sumber daya dari Hugging Face.
Cache otomatis ( dokumentasi ): Tidak
Perpecahan :
Membelah | Contoh |
---|
'test' | 10.000 |
FeaturesDict({
'file_name': Text(shape=(), dtype=string),
'image': Image(shape=(None, None, 3), dtype=uint8),
'label': ClassLabel(shape=(), dtype=int64, num_classes=1000),
})
Fitur | Kelas | Membentuk | Tipe D | Keterangan |
---|
| FiturDict | | | |
nama file | Teks | | rangkaian | |
gambar | Gambar | (Tidak ada, Tidak ada, 3) | uint8 | |
label | Label Kelas | | int64 | |
@inproceedings{recht2019imagenet,
title={Do ImageNet Classifiers Generalize to ImageNet?},
author={Recht, Benjamin and Roelofs, Rebecca and Schmidt, Ludwig and Shankar, Vaishaal},
booktitle={International Conference on Machine Learning},
pages={5389--5400},
year={2019}
}
imagenet_v2/frekuensi yang cocok (konfigurasi default)

imagenet_v2/ambang batas-0.7

imagenet_v2/topimages

Kecuali dinyatakan lain, konten di halaman ini dilisensikan berdasarkan Lisensi Creative Commons Attribution 4.0, sedangkan contoh kode dilisensikan berdasarkan Lisensi Apache 2.0. Untuk mengetahui informasi selengkapnya, lihat Kebijakan Situs Google Developers. Java adalah merek dagang terdaftar dari Oracle dan/atau afiliasinya.
Terakhir diperbarui pada 2024-06-01 UTC.
[null,null,["Terakhir diperbarui pada 2024-06-01 UTC."],[],[],null,["# imagenet_v2\n\n\u003cbr /\u003e\n\n- **Description**:\n\nImageNet-v2 is an ImageNet test set (10 per class) collected by closely\nfollowing the original labelling protocol. Each image has been labelled by at\nleast 10 MTurk workers, possibly more, and depending on the strategy used to\nselect which images to include among the 10 chosen for the given class there are\nthree different versions of the dataset. Please refer to section four of the\npaper for more details on how the different variants were compiled.\n\nThe label space is the same as that of ImageNet2012. Each example is represented\nas a dictionary with the following keys:\n\n- 'image': The image, a (H, W, 3)-tensor.\n- 'label': An integer in the range \\[0, 1000).\n- 'file_name': A unique sting identifying the example within the dataset.\n\n- **Homepage** :\n \u003chttps://github.com/modestyachts/ImageNetV2\u003e\n\n- **Source code** :\n [`tfds.datasets.imagenet_v2.Builder`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/datasets/imagenet_v2/imagenet_v2_dataset_builder.py)\n\n- **Versions**:\n\n - `1.0.0`: Initial version.\n - `2.0.0`: Files updated.\n - **`3.0.0`** (default): Fix file_name, from absolute path to path relative to data directory, ie: \"class_id/filename.jpg\".\n - `3.1.0`: New URLs for resources from Hugging Face.\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n No\n\n- **Splits**:\n\n| Split | Examples |\n|----------|----------|\n| `'test'` | 10,000 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'file_name': Text(shape=(), dtype=string),\n 'image': Image(shape=(None, None, 3), dtype=uint8),\n 'label': ClassLabel(shape=(), dtype=int64, num_classes=1000),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|-----------|--------------|-----------------|--------|-------------|\n| | FeaturesDict | | | |\n| file_name | Text | | string | |\n| image | Image | (None, None, 3) | uint8 | |\n| label | ClassLabel | | int64 | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `('image', 'label')`\n\n- **Citation**:\n\n @inproceedings{recht2019imagenet,\n title={Do ImageNet Classifiers Generalize to ImageNet?},\n author={Recht, Benjamin and Roelofs, Rebecca and Schmidt, Ludwig and Shankar, Vaishaal},\n booktitle={International Conference on Machine Learning},\n pages={5389--5400},\n year={2019}\n }\n\nimagenet_v2/matched-frequency (default config)\n----------------------------------------------\n\n- **Download size** : `1.18 GiB`\n\n- **Dataset size** : `1.16 GiB`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\nimagenet_v2/threshold-0.7\n-------------------------\n\n- **Download size** : `1.16 GiB`\n\n- **Dataset size** : `1.15 GiB`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\nimagenet_v2/topimages\n---------------------\n\n- **Download size** : `1.16 GiB`\n\n- **Dataset size** : `1.14 GiB`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples..."]]