protein_net
Tetap teratur dengan koleksi
Simpan dan kategorikan konten berdasarkan preferensi Anda.
ProteinNet adalah kumpulan data standar untuk pembelajaran mesin struktur protein. Ini menyediakan urutan protein, struktur (sekunder dan tersier), multiple sequence alignments (MSA), matriks penilaian posisi-spesifik (PSSM), dan pemisahan pelatihan / validasi / pengujian standar. ProteinNet dibangun di atas penilaian CASP dua tahunan, yang melakukan prediksi buta dari struktur protein yang baru saja dipecahkan tetapi tidak tersedia untuk umum, untuk menyediakan rangkaian pengujian yang mendorong batas metodologi komputasi. Ini diatur sebagai serangkaian kumpulan data, yang mencakup CASP 7 hingga 12 (mencakup periode sepuluh tahun), untuk menyediakan berbagai ukuran kumpulan data yang memungkinkan penilaian metode baru dalam rezim data yang relatif miskin dan kaya data.
FeaturesDict({
'evolutionary': Tensor(shape=(None, 21), dtype=float32),
'id': Text(shape=(), dtype=string),
'length': int32,
'mask': Tensor(shape=(None,), dtype=bool),
'primary': Sequence(ClassLabel(shape=(), dtype=int64, num_classes=20)),
'tertiary': Tensor(shape=(None, 3), dtype=float32),
})
Fitur | Kelas | Membentuk | Dtype | Keterangan |
---|
| fiturDict | | | |
evolusioner | Tensor | (Tidak ada, 21) | float32 | |
Indo | Teks | | rangkaian | |
panjangnya | Tensor | | int32 | |
masker | Tensor | (Tidak ada,) | bool | |
utama | Urutan(Label Kelas) | (Tidak ada,) | int64 | |
tersier | Tensor | (Tidak ada, 3) | float32 | |
@article{ProteinNet19,
title = { {ProteinNet}: a standardized data set for machine learning of protein structure},
author = {AlQuraishi, Mohammed},
journal = {BMC bioinformatics},
volume = {20},
number = {1},
pages = {1--10},
year = {2019},
publisher = {BioMed Central}
}
protein_net/casp7 (konfigurasi default)
Membelah | Contoh |
---|
'test' | 93 |
'train_100' | 34.557 |
'train_30' | 10.333 |
'train_50' | 13.024 |
'train_70' | 15.207 |
'train_90' | 17.611 |
'train_95' | 17.938 |
'validation' | 224 |
protein_net/casp8
Membelah | Contoh |
---|
'test' | 120 |
'train_100' | 48.087 |
'train_30' | 13.881 |
'train_50' | 17.970 |
'train_70' | 21.191 |
'train_90' | 24.556 |
'train_95' | 25.035 |
'validation' | 224 |
protein_net/casp9
Membelah | Contoh |
---|
'test' | 116 |
'train_100' | 60.350 |
'train_30' | 16.973 |
'train_50' | 22.172 |
'train_70' | 26.263 |
'train_90' | 30.513 |
'train_95' | 31.128 |
'validation' | 224 |
protein_net/casp10
Membelah | Contoh |
---|
'test' | 95 |
'train_100' | 73.116 |
'train_30' | 19.495 |
'train_50' | 25.897 |
'train_70' | 31.001 |
'train_90' | 36.258 |
'train_95' | 37.033 |
'validation' | 224 |
protein_net/casp11
Membelah | Contoh |
---|
'test' | 81 |
'train_100' | 87.573 |
'train_30' | 22.344 |
'train_50' | 29.936 |
'train_70' | 36.005 |
'train_90' | 42.507 |
'train_95' | 43.544 |
'validation' | 224 |
protein_net/casp12
Membelah | Contoh |
---|
'test' | 40 |
'train_100' | 104.059 |
'train_30' | 25.299 |
'train_50' | 34.039 |
'train_70' | 41.522 |
'train_90' | 49.600 |
'train_95' | 50.914 |
'validation' | 224 |
Kecuali dinyatakan lain, konten di halaman ini dilisensikan berdasarkan Lisensi Creative Commons Attribution 4.0, sedangkan contoh kode dilisensikan berdasarkan Lisensi Apache 2.0. Untuk mengetahui informasi selengkapnya, lihat Kebijakan Situs Google Developers. Java adalah merek dagang terdaftar dari Oracle dan/atau afiliasinya.
Terakhir diperbarui pada 2022-12-16 UTC.
[null,null,["Terakhir diperbarui pada 2022-12-16 UTC."],[],[],null,["# protein_net\n\n\u003cbr /\u003e\n\n- **Description**:\n\nProteinNet is a standardized data set for machine learning of protein structure.\nIt provides protein sequences, structures (secondary and tertiary), multiple\nsequence alignments (MSAs), position-specific scoring matrices (PSSMs), and\nstandardized training / validation / test splits. ProteinNet builds on the\nbiennial CASP assessments, which carry out blind predictions of recently solved\nbut publicly unavailable protein structures, to provide test sets that push the\nfrontiers of computational methodology. It is organized as a series of data\nsets, spanning CASP 7 through 12 (covering a ten-year period), to provide a\nrange of data set sizes that enable assessment of new methods in relatively data\npoor and data rich regimes.\n\n- **Homepage** :\n \u003chttps://github.com/aqlaboratory/proteinnet\u003e\n\n- **Source code** :\n [`tfds.datasets.protein_net.Builder`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/datasets/protein_net/protein_net_dataset_builder.py)\n\n- **Versions**:\n\n - **`1.0.0`** (default): Initial release.\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n No\n\n- **Feature structure**:\n\n FeaturesDict({\n 'evolutionary': Tensor(shape=(None, 21), dtype=float32),\n 'id': Text(shape=(), dtype=string),\n 'length': int32,\n 'mask': Tensor(shape=(None,), dtype=bool),\n 'primary': Sequence(ClassLabel(shape=(), dtype=int64, num_classes=20)),\n 'tertiary': Tensor(shape=(None, 3), dtype=float32),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|--------------|----------------------|------------|---------|-------------|\n| | FeaturesDict | | | |\n| evolutionary | Tensor | (None, 21) | float32 | |\n| id | Text | | string | |\n| length | Tensor | | int32 | |\n| mask | Tensor | (None,) | bool | |\n| primary | Sequence(ClassLabel) | (None,) | int64 | |\n| tertiary | Tensor | (None, 3) | float32 | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `('primary', 'tertiary')`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n Not supported.\n\n- **Citation**:\n\n @article{ProteinNet19,\n title = { {ProteinNet}: a standardized data set for machine learning of protein structure},\n author = {AlQuraishi, Mohammed},\n journal = {BMC bioinformatics},\n volume = {20},\n number = {1},\n pages = {1--10},\n year = {2019},\n publisher = {BioMed Central}\n }\n\nprotein_net/casp7 (default config)\n----------------------------------\n\n- **Download size** : `3.18 GiB`\n\n- **Dataset size** : `2.53 GiB`\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'test'` | 93 |\n| `'train_100'` | 34,557 |\n| `'train_30'` | 10,333 |\n| `'train_50'` | 13,024 |\n| `'train_70'` | 15,207 |\n| `'train_90'` | 17,611 |\n| `'train_95'` | 17,938 |\n| `'validation'` | 224 |\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\nprotein_net/casp8\n-----------------\n\n- **Download size** : `4.96 GiB`\n\n- **Dataset size** : `3.55 GiB`\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'test'` | 120 |\n| `'train_100'` | 48,087 |\n| `'train_30'` | 13,881 |\n| `'train_50'` | 17,970 |\n| `'train_70'` | 21,191 |\n| `'train_90'` | 24,556 |\n| `'train_95'` | 25,035 |\n| `'validation'` | 224 |\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\nprotein_net/casp9\n-----------------\n\n- **Download size** : `6.65 GiB`\n\n- **Dataset size** : `4.54 GiB`\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'test'` | 116 |\n| `'train_100'` | 60,350 |\n| `'train_30'` | 16,973 |\n| `'train_50'` | 22,172 |\n| `'train_70'` | 26,263 |\n| `'train_90'` | 30,513 |\n| `'train_95'` | 31,128 |\n| `'validation'` | 224 |\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\nprotein_net/casp10\n------------------\n\n- **Download size** : `8.65 GiB`\n\n- **Dataset size** : `5.57 GiB`\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'test'` | 95 |\n| `'train_100'` | 73,116 |\n| `'train_30'` | 19,495 |\n| `'train_50'` | 25,897 |\n| `'train_70'` | 31,001 |\n| `'train_90'` | 36,258 |\n| `'train_95'` | 37,033 |\n| `'validation'` | 224 |\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\nprotein_net/casp11\n------------------\n\n- **Download size** : `10.81 GiB`\n\n- **Dataset size** : `6.72 GiB`\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'test'` | 81 |\n| `'train_100'` | 87,573 |\n| `'train_30'` | 22,344 |\n| `'train_50'` | 29,936 |\n| `'train_70'` | 36,005 |\n| `'train_90'` | 42,507 |\n| `'train_95'` | 43,544 |\n| `'validation'` | 224 |\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\nprotein_net/casp12\n------------------\n\n- **Download size** : `13.18 GiB`\n\n- **Dataset size** : `8.05 GiB`\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'test'` | 40 |\n| `'train_100'` | 104,059 |\n| `'train_30'` | 25,299 |\n| `'train_50'` | 34,039 |\n| `'train_70'` | 41,522 |\n| `'train_90'` | 49,600 |\n| `'train_95'` | 50,914 |\n| `'validation'` | 224 |\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples..."]]