qm9
Tetap teratur dengan koleksi
Simpan dan kategorikan konten berdasarkan preferensi Anda.
QM9 terdiri dari sifat geometris, energik, elektronik, dan termodinamika yang dihitung untuk 134k molekul organik kecil stabil yang terdiri dari C, H, O, N, dan F. Seperti biasa, kami menghilangkan molekul yang tidak dikarakterisasi dan menyediakan 130.831 sisanya.
FeaturesDict({
'A': float32,
'B': float32,
'C': float32,
'Cv': float32,
'G': float32,
'G_atomization': float32,
'H': float32,
'H_atomization': float32,
'InChI': string,
'InChI_relaxed': string,
'Mulliken_charges': Tensor(shape=(29,), dtype=float32),
'SMILES': string,
'SMILES_relaxed': string,
'U': float32,
'U0': float32,
'U0_atomization': float32,
'U_atomization': float32,
'alpha': float32,
'charges': Tensor(shape=(29,), dtype=int64),
'frequencies': Tensor(shape=(None,), dtype=float32),
'gap': float32,
'homo': float32,
'index': int64,
'lumo': float32,
'mu': float32,
'num_atoms': int64,
'positions': Tensor(shape=(29, 3), dtype=float32),
'r2': float32,
'tag': string,
'zpve': float32,
})
Fitur | Kelas | Membentuk | Tipe D | Keterangan |
---|
| FiturDict | | | |
A | Tensor | | float32 | |
B | Tensor | | float32 | |
C | Tensor | | float32 | |
CV | Tensor | | float32 | |
G | Tensor | | float32 | |
G_atomisasi | Tensor | | float32 | |
H | Tensor | | float32 | |
H_atomisasi | Tensor | | float32 | |
Di ChI | Tensor | | rangkaian | |
DiChI_santai | Tensor | | rangkaian | |
Mulliken_biaya | Tensor | (29,) | float32 | |
SENYUM | Tensor | | rangkaian | |
SMILES_santai | Tensor | | rangkaian | |
kamu | Tensor | | float32 | |
U0 | Tensor | | float32 | |
U0_atomisasi | Tensor | | float32 | |
U_atomisasi | Tensor | | float32 | |
alfa | Tensor | | float32 | |
biaya | Tensor | (29,) | int64 | |
frekuensi | Tensor | (Tidak ada,) | float32 | |
celah | Tensor | | float32 | |
homo | Tensor | | float32 | |
indeks | Tensor | | int64 | |
lumo | Tensor | | float32 | |
mu | Tensor | | float32 | |
jumlah_atom | Tensor | | int64 | |
posisi | Tensor | (29, 3) | float32 | |
r2 | Tensor | | float32 | |
menandai | Tensor | | rangkaian | |
zpve | Tensor | | float32 | |
@article{ramakrishnan2014quantum,
title={Quantum chemistry structures and properties of 134 kilo molecules},
author={Ramakrishnan, Raghunathan and Dral, Pavlo O and Rupp, Matthias and von Lilienfeld, O Anatole},
journal={Scientific Data},
volume={1},
year={2014},
publisher={Nature Publishing Group}
}
qm9/asli (konfigurasi default)
Deskripsi konfigurasi : QM9 tidak mendefinisikan pemisahan apa pun. Jadi varian ini menempatkan kumpulan data QM9 lengkap dalam pemisahan kereta, dalam urutan aslinya (tanpa pengacakan).
Cache otomatis ( dokumentasi ): Hanya ketika shuffle_files=False
(kereta)
Perpecahan :
Membelah | Contoh |
---|
'train' | 130.831 |
qm9/dandang
Membelah | Contoh |
---|
'test' | 13.083 |
'train' | 100.000 |
'validation' | 17.748 |
qm9/dimenet
Membelah | Contoh |
---|
'test' | 10.831 |
'train' | 110.000 |
'validation' | 10.000 |
Kecuali dinyatakan lain, konten di halaman ini dilisensikan berdasarkan Lisensi Creative Commons Attribution 4.0, sedangkan contoh kode dilisensikan berdasarkan Lisensi Apache 2.0. Untuk mengetahui informasi selengkapnya, lihat Kebijakan Situs Google Developers. Java adalah merek dagang terdaftar dari Oracle dan/atau afiliasinya.
Terakhir diperbarui pada 2024-12-13 UTC.
[null,null,["Terakhir diperbarui pada 2024-12-13 UTC."],[],[],null,["# qm9\n\n\u003cbr /\u003e\n\n- **Description**:\n\nQM9 consists of computed geometric, energetic, electronic, and thermodynamic\nproperties for 134k stable small organic molecules made up of C, H, O, N, and F.\nAs usual, we remove the uncharacterized molecules and provide the remaining\n130,831.\n\n- **Homepage** :\n \u003chttps://doi.org/10.6084/m9.figshare.c.978904.v5\u003e\n\n- **Source code** :\n [`tfds.datasets.qm9.Builder`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/datasets/qm9/qm9_dataset_builder.py)\n\n- **Versions**:\n\n - **`1.0.0`** (default): Initial release.\n- **Download size** : `82.62 MiB`\n\n- **Dataset size** : `177.16 MiB`\n\n- **Feature structure**:\n\n FeaturesDict({\n 'A': float32,\n 'B': float32,\n 'C': float32,\n 'Cv': float32,\n 'G': float32,\n 'G_atomization': float32,\n 'H': float32,\n 'H_atomization': float32,\n 'InChI': string,\n 'InChI_relaxed': string,\n 'Mulliken_charges': Tensor(shape=(29,), dtype=float32),\n 'SMILES': string,\n 'SMILES_relaxed': string,\n 'U': float32,\n 'U0': float32,\n 'U0_atomization': float32,\n 'U_atomization': float32,\n 'alpha': float32,\n 'charges': Tensor(shape=(29,), dtype=int64),\n 'frequencies': Tensor(shape=(None,), dtype=float32),\n 'gap': float32,\n 'homo': float32,\n 'index': int64,\n 'lumo': float32,\n 'mu': float32,\n 'num_atoms': int64,\n 'positions': Tensor(shape=(29, 3), dtype=float32),\n 'r2': float32,\n 'tag': string,\n 'zpve': float32,\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|------------------|--------------|---------|---------|-------------|\n| | FeaturesDict | | | |\n| A | Tensor | | float32 | |\n| B | Tensor | | float32 | |\n| C | Tensor | | float32 | |\n| Cv | Tensor | | float32 | |\n| G | Tensor | | float32 | |\n| G_atomization | Tensor | | float32 | |\n| H | Tensor | | float32 | |\n| H_atomization | Tensor | | float32 | |\n| InChI | Tensor | | string | |\n| InChI_relaxed | Tensor | | string | |\n| Mulliken_charges | Tensor | (29,) | float32 | |\n| SMILES | Tensor | | string | |\n| SMILES_relaxed | Tensor | | string | |\n| U | Tensor | | float32 | |\n| U0 | Tensor | | float32 | |\n| U0_atomization | Tensor | | float32 | |\n| U_atomization | Tensor | | float32 | |\n| alpha | Tensor | | float32 | |\n| charges | Tensor | (29,) | int64 | |\n| frequencies | Tensor | (None,) | float32 | |\n| gap | Tensor | | float32 | |\n| homo | Tensor | | float32 | |\n| index | Tensor | | int64 | |\n| lumo | Tensor | | float32 | |\n| mu | Tensor | | float32 | |\n| num_atoms | Tensor | | int64 | |\n| positions | Tensor | (29, 3) | float32 | |\n| r2 | Tensor | | float32 | |\n| tag | Tensor | | string | |\n| zpve | Tensor | | float32 | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `None`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n Not supported.\n\n- **Citation**:\n\n @article{ramakrishnan2014quantum,\n title={Quantum chemistry structures and properties of 134 kilo molecules},\n author={Ramakrishnan, Raghunathan and Dral, Pavlo O and Rupp, Matthias and von Lilienfeld, O Anatole},\n journal={Scientific Data},\n volume={1},\n year={2014},\n publisher={Nature Publishing Group}\n }\n\nqm9/original (default config)\n-----------------------------\n\n- **Config description**: QM9 does not define any splits. So this variant puts\n the full QM9 dataset in the train split, in the original order (no\n shuffling).\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n Only when `shuffle_files=False` (train)\n\n- **Splits**:\n\n| Split | Examples |\n|-----------|----------|\n| `'train'` | 130,831 |\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\nqm9/cormorant\n-------------\n\n- **Config description** : Dataset split used by Cormorant. 100,000 train,\n 17,748 validation, and 13,083 test samples. Splitting happens after\n shuffling with seed 0. Paper: \u003chttps://arxiv.org/abs/1906.04015\u003e Split:\n \u003chttps://github.com/risilab/cormorant/blob/master/src/cormorant/data/prepare/qm9.py\u003e\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n Yes (test, validation), Only when `shuffle_files=False` (train)\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'test'` | 13,083 |\n| `'train'` | 100,000 |\n| `'validation'` | 17,748 |\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\nqm9/dimenet\n-----------\n\n- **Config description** : Dataset split used by DimeNet. 110,000 train, 10,000\n validation, and 10,831 test samples. Splitting happens after shuffling with\n seed 42. Paper: \u003chttps://arxiv.org/abs/2003.03123\u003e Split:\n \u003chttps://github.com/gasteigerjo/dimenet/blob/master/dimenet/training/data_provider.py\u003e\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n Yes (test, validation), Only when `shuffle_files=False` (train)\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'test'` | 10,831 |\n| `'train'` | 110,000 |\n| `'validation'` | 10,000 |\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples..."]]