reddit

  • Deskripsi :

Korpus ini berisi postingan yang telah diproses sebelumnya dari kumpulan data Reddit. Dataset terdiri dari 3.848.330 postingan dengan panjang rata-rata 270 kata untuk konten, dan 28 kata untuk ringkasan.

Fitur termasuk string: penulis, badan, badan normal, konten, ringkasan, subreddit, subreddit_id. Konten digunakan sebagai dokumen dan ringkasan digunakan sebagai ringkasan.

Membelah Contoh
'train' 3.848.330
  • Struktur fitur :
FeaturesDict({
   
'author': string,
   
'body': string,
   
'content': string,
   
'id': string,
   
'normalizedBody': string,
   
'subreddit': string,
   
'subreddit_id': string,
   
'summary': string,
})
  • Dokumentasi fitur :
Fitur Kelas Membentuk Dtype Keterangan
fiturDict
pengarang Tensor rangkaian
tubuh Tensor rangkaian
isi Tensor rangkaian
Indo Tensor rangkaian
normalizedBody Tensor rangkaian
subreddit Tensor rangkaian
subreddit_id Tensor rangkaian
ringkasan Tensor rangkaian
  • Kutipan :
@inproceedings{volske-etal-2017-tl,
    title
= "{TL};{DR}: Mining {R}eddit to Learn Automatic Summarization",
    author
= {V{\"o}lske, Michael  and
      Potthast, Martin  and
      Syed, Shahbaz  and
      Stein, Benno},
    booktitle = "
Proceedings of the Workshop on New Frontiers in Summarization",
    month = sep,
    year = "
2017",
    address = "
Copenhagen, Denmark",
    publisher = "
Association for Computational Linguistics",
    url = "
https://www.aclweb.org/anthology/W17-4508",
    doi
= "10.18653/v1/W17-4508",
    pages
= "59--63",
   
abstract = "Recent advances in automatic text summarization have used deep neural networks to generate high-quality abstractive summaries, but the performance of these models strongly depends on large amounts of suitable training data. We propose a new method for mining social media for author-provided summaries, taking advantage of the common practice of appending a {``}TL;DR{''} to long posts. A case study using a large Reddit crawl yields the Webis-TLDR-17 dataset, complementing existing corpora primarily from the news genre. Our technique is likely applicable to other social media sites and general web crawls.",
}