- Keterangan :
Sawyer mendorong dan mengambil benda di tempat sampah
Beranda : https://arxiv.org/abs/2206.11894
Kode sumber :
tfds.robotics.rtx.StanfordMaskVitConvertedExternallyToRlds
Versi :
-
0.1.0
(default): Rilis awal.
-
Ukuran unduhan :
Unknown size
Ukuran kumpulan data :
76.17 GiB
Cache otomatis ( dokumentasi ): Tidak
Perpecahan :
Membelah | Contoh |
---|---|
'train' | 9.109 |
'val' | 91 |
- Struktur fitur :
FeaturesDict({
'episode_metadata': FeaturesDict({
'file_path': Text(shape=(), dtype=string),
}),
'steps': Dataset({
'action': Tensor(shape=(5,), dtype=float32, description=Robot action, consists of [3x change in end effector position, 1x gripper yaw, 1x open/close gripper (-1 means to open the gripper, 1 means close)].),
'discount': Scalar(shape=(), dtype=float32, description=Discount if provided, default to 1.),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'language_embedding': Tensor(shape=(512,), dtype=float32, description=Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5),
'language_instruction': Text(shape=(), dtype=string),
'observation': FeaturesDict({
'end_effector_pose': Tensor(shape=(5,), dtype=float32, description=Robot end effector pose, consists of [3x Cartesian position, 1x gripper yaw, 1x gripper position]. This is the state used in the MaskViT paper.),
'finger_sensors': Tensor(shape=(1,), dtype=float32, description=1x Sawyer gripper finger sensors.),
'high_bound': Tensor(shape=(5,), dtype=float32, description=High bound for end effector pose normalization. Consists of [3x Cartesian position, 1x gripper yaw, 1x gripper position].),
'image': Image(shape=(480, 480, 3), dtype=uint8, description=Main camera RGB observation.),
'low_bound': Tensor(shape=(5,), dtype=float32, description=Low bound for end effector pose normalization. Consists of [3x Cartesian position, 1x gripper yaw, 1x gripper position].),
'state': Tensor(shape=(15,), dtype=float32, description=Robot state, consists of [7x robot joint angles, 7x robot joint velocities,1x gripper position].),
}),
'reward': Scalar(shape=(), dtype=float32, description=Reward if provided, 1 on final step for demos.),
}),
})
- Dokumentasi fitur :
Fitur | Kelas | Membentuk | Tipe D | Keterangan |
---|---|---|---|---|
FiturDict | ||||
episode_metadata | FiturDict | |||
episode_metadata/file_path | Teks | rangkaian | Jalur ke file data asli. | |
tangga | Kumpulan data | |||
langkah/tindakan | Tensor | (5,) | float32 | Aksi robot, terdiri dari [3x perubahan posisi end effector, 1x gripper yaw, 1x buka/tutup gripper (-1 artinya buka gripper, 1 artinya tutup)]. |
langkah/diskon | Skalar | float32 | Diskon jika disediakan, defaultnya adalah 1. | |
langkah/adalah_pertama | Tensor | bodoh | ||
langkah/adalah_terakhir | Tensor | bodoh | ||
langkah/is_terminal | Tensor | bodoh | ||
langkah/bahasa_embedding | Tensor | (512,) | float32 | Penyematan bahasa Kona. Lihat https://tfhub.dev/google/universal-sentence-encoder-large/5 |
langkah/bahasa_instruksi | Teks | rangkaian | Instruksi Bahasa. | |
langkah/pengamatan | FiturDict | |||
langkah/pengamatan/end_effector_pose | Tensor | (5,) | float32 | Pose efektor ujung robot, terdiri dari [3x posisi Cartesian, 1x gripper yaw, 1x posisi gripper]. Ini adalah keadaan yang digunakan dalam makalah MaskViT. |
langkah/pengamatan/finger_sensors | Tensor | (1,) | float32 | 1x sensor jari gripper Sawyer. |
langkah/pengamatan/high_bound | Tensor | (5,) | float32 | Batas tinggi untuk normalisasi pose efektor akhir. Terdiri dari [3x posisi Cartesian, 1x gripper yaw, 1x posisi gripper]. |
langkah/pengamatan/gambar | Gambar | (480, 480, 3) | uint8 | Pengamatan RGB kamera utama. |
langkah/pengamatan/low_bound | Tensor | (5,) | float32 | Batas rendah untuk normalisasi pose efektor akhir. Terdiri dari [3x posisi Cartesian, 1x gripper yaw, 1x posisi gripper]. |
langkah/pengamatan/keadaan | Tensor | (15,) | float32 | Keadaan robot, terdiri dari [7x sudut sambungan robot, 7x kecepatan sambungan robot, 1x posisi gripper]. |
langkah/hadiah | Skalar | float32 | Hadiah jika diberikan, 1 pada langkah terakhir untuk demo. |
Kunci yang diawasi (Lihat dokumen
as_supervised
):None
Gambar ( tfds.show_examples ): Tidak didukung.
Contoh ( tfds.as_dataframe ): Tidak ada.
Kutipan :
@inproceedings{gupta2022maskvit,
title={MaskViT: Masked Visual Pre-Training for Video Prediction},
author={Agrim Gupta and Stephen Tian and Yunzhi Zhang and Jiajun Wu and Roberto Martín-Martín and Li Fei-Fei},
booktitle={International Conference on Learning Representations},
year={2022}
}