tensorflow:: ops:: FusedBatchNormGradV2
#include <nn_ops.h>
Gradient for batch normalization.
Summary
Note that the size of 4D Tensors are defined by either "NHWC" or "NCHW". The size of 1D Tensors matches the dimension C of the 4D Tensors.
Args:
- scope: A Scope object
 - y_backprop: A 4D Tensor for the gradient with respect to y.
 - x: A 4D Tensor for input data.
 - scale: A 1D Tensor for scaling factor, to scale the normalized x.
 - reserve_space_1: When is_training is True, a 1D Tensor for the computed batch mean to be reused in gradient computation. When is_training is False, a 1D Tensor for the population mean to be reused in both 1st and 2nd order gradient computation.
 - reserve_space_2: When is_training is True, a 1D Tensor for the computed batch variance (inverted variance in the cuDNN case) to be reused in gradient computation. When is_training is False, a 1D Tensor for the population variance to be reused in both 1st and 2nd order gradient computation.
 
Optional attributes (see Attrs):
- epsilon: A small float number added to the variance of x.
 - data_format: The data format for y_backprop, x, x_backprop. Either "NHWC" (default) or "NCHW".
 - is_training: A bool value to indicate the operation is for training (default) or inference.
 
Returns:
Outputx_backprop: A 4D Tensor for the gradient with respect to x.Outputscale_backprop: A 1D Tensor for the gradient with respect to scale.Outputoffset_backprop: A 1D Tensor for the gradient with respect to offset.Outputreserve_space_3: Unused placeholder to match the mean input in FusedBatchNorm.Outputreserve_space_4: Unused placeholder to match the variance input in FusedBatchNorm.
Constructors and Destructors | 
|
|---|---|
FusedBatchNormGradV2(const ::tensorflow::Scope & scope, ::tensorflow::Input y_backprop, ::tensorflow::Input x, ::tensorflow::Input scale, ::tensorflow::Input reserve_space_1, ::tensorflow::Input reserve_space_2)
 | 
|
FusedBatchNormGradV2(const ::tensorflow::Scope & scope, ::tensorflow::Input y_backprop, ::tensorflow::Input x, ::tensorflow::Input scale, ::tensorflow::Input reserve_space_1, ::tensorflow::Input reserve_space_2, const FusedBatchNormGradV2::Attrs & attrs)
 | 
Public attributes | 
|
|---|---|
offset_backprop
 | 
|
operation
 | 
|
reserve_space_3
 | 
|
reserve_space_4
 | 
|
scale_backprop
 | 
|
x_backprop
 | 
|
Public static functions | 
|
|---|---|
DataFormat(StringPiece x)
 | 
|
Epsilon(float x)
 | 
|
IsTraining(bool x)
 | 
|
Structs | 
|
|---|---|
| 
tensorflow:: | 
 Optional attribute setters for FusedBatchNormGradV2.  | 
Public attributes
offset_backprop
::tensorflow::Output offset_backprop
operation
Operation operation
reserve_space_3
::tensorflow::Output reserve_space_3
reserve_space_4
::tensorflow::Output reserve_space_4
scale_backprop
::tensorflow::Output scale_backprop
x_backprop
::tensorflow::Output x_backprop
Public functions
FusedBatchNormGradV2
FusedBatchNormGradV2( const ::tensorflow::Scope & scope, ::tensorflow::Input y_backprop, ::tensorflow::Input x, ::tensorflow::Input scale, ::tensorflow::Input reserve_space_1, ::tensorflow::Input reserve_space_2 )
FusedBatchNormGradV2
FusedBatchNormGradV2( const ::tensorflow::Scope & scope, ::tensorflow::Input y_backprop, ::tensorflow::Input x, ::tensorflow::Input scale, ::tensorflow::Input reserve_space_1, ::tensorflow::Input reserve_space_2, const FusedBatchNormGradV2::Attrs & attrs )
Public static functions
DataFormat
Attrs DataFormat( StringPiece x )
Epsilon
Attrs Epsilon( float x )
IsTraining
Attrs IsTraining( bool x )