accentdb
Stay organized with collections
Save and categorize content based on your preferences.
AccentDB is a multi-pairwise parallel corpus of structured and labelled accented
speech. It contains speech samples from speakers of 4 non-native accents of
English (8 speakers, 4 Indian languages); and also has a compilation of 4 native
accents of English (4 countries, 13 speakers) and a metropolitan Indian accent
(2 speakers). The dataset available here corresponds to release titled
accentdb_extended on https://accentdb.github.io/#dataset
Split |
Examples |
'train' |
17,313 |
FeaturesDict({
'audio': Audio(shape=(None,), dtype=int64),
'label': ClassLabel(shape=(), dtype=int64, num_classes=9),
'speaker_id': string,
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
audio |
Audio |
(None,) |
int64 |
|
label |
ClassLabel |
|
int64 |
|
speaker_id |
Tensor |
|
string |
|
@InProceedings{ahamad-anand-bhargava:2020:LREC,
author = {Ahamad, Afroz and Anand, Ankit and Bhargava, Pranesh},
title = {AccentDB: A Database of Non-Native English Accents to Assist Neural Speech Recognition},
booktitle = {Proceedings of The 12th Language Resources and Evaluation Conference},
month = {May},
year = {2020},
address = {Marseille, France},
publisher = {European Language Resources Association},
pages = {5353--5360},
url = {https://www.aclweb.org/anthology/2020.lrec-1.659}
}
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2022-12-06 UTC.
[null,null,["Last updated 2022-12-06 UTC."],[],[],null,["# accentdb\n\n\u003cbr /\u003e\n\n- **Description**:\n\nAccentDB is a multi-pairwise parallel corpus of structured and labelled accented\nspeech. It contains speech samples from speakers of 4 non-native accents of\nEnglish (8 speakers, 4 Indian languages); and also has a compilation of 4 native\naccents of English (4 countries, 13 speakers) and a metropolitan Indian accent\n(2 speakers). The dataset available here corresponds to release titled\naccentdb_extended on \u003chttps://accentdb.github.io/#dataset\u003e\n\n- **Additional Documentation** :\n [Explore on Papers With Code\n north_east](https://paperswithcode.com/dataset/accentdb)\n\n- **Homepage** : \u003chttps://accentdb.github.io/\u003e\n\n- **Source code** :\n [`tfds.datasets.accentdb.Builder`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/datasets/accentdb/accentdb_dataset_builder.py)\n\n- **Versions**:\n\n - **`1.0.0`** (default): No release notes.\n- **Download size** : `3.56 GiB`\n\n- **Dataset size** : `19.47 GiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n No\n\n- **Splits**:\n\n| Split | Examples |\n|-----------|----------|\n| `'train'` | 17,313 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'audio': Audio(shape=(None,), dtype=int64),\n 'label': ClassLabel(shape=(), dtype=int64, num_classes=9),\n 'speaker_id': string,\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|------------|--------------|---------|--------|-------------|\n| | FeaturesDict | | | |\n| audio | Audio | (None,) | int64 | |\n| label | ClassLabel | | int64 | |\n| speaker_id | Tensor | | string | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `('audio', 'label')`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n Not supported.\n\n- **Examples**\n ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @InProceedings{ahamad-anand-bhargava:2020:LREC,\n author = {Ahamad, Afroz and Anand, Ankit and Bhargava, Pranesh},\n title = {AccentDB: A Database of Non-Native English Accents to Assist Neural Speech Recognition},\n booktitle = {Proceedings of The 12th Language Resources and Evaluation Conference},\n month = {May},\n year = {2020},\n address = {Marseille, France},\n publisher = {European Language Resources Association},\n pages = {5353--5360},\n url = {https://www.aclweb.org/anthology/2020.lrec-1.659}\n }"]]